Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
tutorials:t21 [2019/08/13 18:39] – [T21: Strain induced precipitates] pwarczoktutorials:t21 [2023/08/18 13:36] (current) – [T21: Strain induced precipitates] pwarczok
Line 2: Line 2:
  
 //This tutorial was tested on\\ //This tutorial was tested on\\
-MatCalc version 6.02 rel 1.003\\+MatCalc version 6.04 rel 1.002\\
 license: free\\ license: free\\
 database: mc_fe.tdb; mc_fe.ddb// database: mc_fe.tdb; mc_fe.ddb//
Line 30: Line 30:
 The phase fractions can be plotted by calling the appropriate user-defined window. In **'View'** -> **'Create new window'**, select the 'user defined' tab. There, select '01_all_phase_fractions over T_celsius_logY' and click on 'OK' The phase fractions can be plotted by calling the appropriate user-defined window. In **'View'** -> **'Create new window'**, select the 'user defined' tab. There, select '01_all_phase_fractions over T_celsius_logY' and click on 'OK'
  
-{{:tutorials:t21:img:t21_user_defined_equilib_2017.png| MatCalc plot}}+{{:tutorials:t21:img:t21_user_defined_equilib_6050006.png| MatCalc plot}}
  
 This will result in the plot looking like the one shown below. From this diagram it can be concluded that NbC precipitates below 1300°C and the ferrite will form below 850°C. This will result in the plot looking like the one shown below. From this diagram it can be concluded that NbC precipitates below 1300°C and the ferrite will form below 850°C.
 +
 {{:tutorials:t21:img:t21_equilib_phase_fractions.png| MatCalc plot}} {{:tutorials:t21:img:t21_equilib_phase_fractions.png| MatCalc plot}}
  
Line 43: Line 44:
 Now, define the precipitate phase settings in **'Phase status'** window. Select **'FCC_A1#01'** and click on **'Create'** and **'precipitate (_Pnn'**). In 'Nucleation' -> 'Sites' set 'dislocations' as nucleation sites (and remove the checkmark from 'bulk'). Now, define the precipitate phase settings in **'Phase status'** window. Select **'FCC_A1#01'** and click on **'Create'** and **'precipitate (_Pnn'**). In 'Nucleation' -> 'Sites' set 'dislocations' as nucleation sites (and remove the checkmark from 'bulk').
  
-{{:tutorials:t21:img:t21_nbc_austen_initial_set_6011003.png?650| MatCalc plot}}+{{:tutorials:t21:img:t21_nbc_austen_initial_set_6050006.png?650| MatCalc plot}}
  
 ==== Thermo-mechanical treatment ==== ==== Thermo-mechanical treatment ====
Line 49: Line 50:
 The last step before the initial kinetics simulation is the definition of the thermo-mehanical treatment. In **'Global'** -> **'Thermo-mech. treatments ...'** create a new treatment with the name **'cooling'**. Next, create a segment in which the austenite domain will be cooled from **1300°C** to **750°C** with **1°C/s** cooling rate  The last step before the initial kinetics simulation is the definition of the thermo-mehanical treatment. In **'Global'** -> **'Thermo-mech. treatments ...'** create a new treatment with the name **'cooling'**. Next, create a segment in which the austenite domain will be cooled from **1300°C** to **750°C** with **1°C/s** cooling rate 
  
-{{:tutorials:t21:img:t21_cooling_segment.png?650| MatCalc plot}}+{{:tutorials:t21:img:t21_cooling_segment_6050006.png?650| MatCalc plot}}
  
-{{:tutorials:t21:img:t21_cooling_treatment_6011003.png?650| MatCalc plot}}+{{:tutorials:t21:img:t21_cooling_treatment_6050006.png?650| MatCalc plot}}
  
 =====  Kinetics simulation of simple cooling process ===== =====  Kinetics simulation of simple cooling process =====
  
-With all the setup procedures done, perform the kinetics simulation. Click on **'Calc' -> 'Precipitation kinetics'**. Select the **'cooling'** treatment in the **'Temperature control ...'** area and click on **'Go'**.+With all the setup procedures done, perform the kinetics simulation. Click on **'Calc' -> 'Microstructure simulation'**. Select the **'cooling'** treatment in the **'Temperature control ...'** area and click on **'Go'**.
  
-{{:tutorials:t21:img:t21_prec_kin_settings.png| MatCalc plot}}+{{:tutorials:t21:img:t21_microstruct_evol_settings_6050006.png| MatCalc plot}}
  
 Once the calculation is completed, use the 'user defined plots' for visualizing the phase fraction, number density and mean radius evolution of the precipitates, as well as the temperature profile. Click on **'View' -> 'Create new window'**, select the **'user-defined'** tab and choose the entry **'03_kinetics_4_frames_T_f_n_r_linX'**. Click on **'OK'**. Set the start of the scaling range to **'1'**.  The analysis of the created plots reveals a somewhat unspectacular precipitaition of NbC phase after 200 s (below 1100°C) that reaches the number density of 1e18 m<sup>-3</sup> and stays in the nanometer range. Once the calculation is completed, use the 'user defined plots' for visualizing the phase fraction, number density and mean radius evolution of the precipitates, as well as the temperature profile. Click on **'View' -> 'Create new window'**, select the **'user-defined'** tab and choose the entry **'03_kinetics_4_frames_T_f_n_r_linX'**. Click on **'OK'**. Set the start of the scaling range to **'1'**.  The analysis of the created plots reveals a somewhat unspectacular precipitaition of NbC phase after 200 s (below 1100°C) that reaches the number density of 1e18 m<sup>-3</sup> and stays in the nanometer range.
Line 82: Line 83:
 Next, in **'Nucleation' -> 'Controls'** tab put a checkmark at the **'use volumetric misfit'** for the precipitate phase. Next, in **'Nucleation' -> 'Controls'** tab put a checkmark at the **'use volumetric misfit'** for the precipitate phase.
  
-{{:tutorials:t21:img:t21_vol_misfit_nucl_2017.png?650| MatCalc plot}}+{{:tutorials:t21:img:t21_vol_misfit_nucl_6050006.png?650| MatCalc plot}}
  
 Click on 'OK' to close the window. Create a new buffer with the name **'Vol_misfit'**. With this buffer selected, perform again the kinetic simulation. Once the simulation is completed, duplicate and lock all series in the plots, then switch the displayed buffer to 'Vol_misfit'. As it can be noticed, the definition of the volumetric misfit decreased amount of the precipitated phase. Click on 'OK' to close the window. Create a new buffer with the name **'Vol_misfit'**. With this buffer selected, perform again the kinetic simulation. Once the simulation is completed, duplicate and lock all series in the plots, then switch the displayed buffer to 'Vol_misfit'. As it can be noticed, the definition of the volumetric misfit decreased amount of the precipitated phase.
Line 111: Line 112:
 You might notice some parameters in the 'Dislocation generation and anihilation ...' section which describe the generation of the dislocations (**'A'**-parameter) and their anihilation during the static (**'B'**-parameter, expressed as a conditional expression) and dynamic recovery (**'C'**-parameter). Leave all the parameters there on the default value. You might notice some parameters in the 'Dislocation generation and anihilation ...' section which describe the generation of the dislocations (**'A'**-parameter) and their anihilation during the static (**'B'**-parameter, expressed as a conditional expression) and dynamic recovery (**'C'**-parameter). Leave all the parameters there on the default value.
  
-{{:tutorials:t21:img:t21_sub_model_parameters_6021003.png?650}}+{{:tutorials:t21:img:t21_sub_model_parameters_6050006.png?650}}
  
  
Line 118: Line 119:
 In this simulation, three deformation runs will be represented. Click on **'Global' -> 'Thermo-mech. treatments'**, select **'cooling'** treatment and click on **'Duplicate'** button at the bottom of the list. A new treatment with name **'cooling_1'** will be created. Select it and click on **'Rename'** button. In the new window that appears, type 'deformation' as the new name and click on **'OK'** button. In this simulation, three deformation runs will be represented. Click on **'Global' -> 'Thermo-mech. treatments'**, select **'cooling'** treatment and click on **'Duplicate'** button at the bottom of the list. A new treatment with name **'cooling_1'** will be created. Select it and click on **'Rename'** button. In the new window that appears, type 'deformation' as the new name and click on **'OK'** button.
  
-{{:tutorials:t21:img:t21_rename_tmt_6011003.png?650}}+{{:tutorials:t21:img:t21_rename_tmt_6050006.png?650}}
  
 In the newly created treatment, modify the first segment end temperature to 1000°C. Add a new segment, change the ramp control setting therein to **'Accumulated strain'** and set the **'Accumulated strain'** value to **'0.7'**.  In the newly created treatment, modify the first segment end temperature to 1000°C. Add a new segment, change the ramp control setting therein to **'Accumulated strain'** and set the **'Accumulated strain'** value to **'0.7'**. 
  
-{{:tutorials:t21:img:t21_deformation_segment_1_6011003.png?650}}+{{:tutorials:t21:img:t21_deformation_segment_1_6050006.png?650}}
  
 Afterwards, switch to the **'MS Evolution'** tab and type in the strain_rate value of **'0.15'**. Afterwards, switch to the **'MS Evolution'** tab and type in the strain_rate value of **'0.15'**.
  
-{{:tutorials:t21:img:t21_deformation_segment_6021003.png?650}}+{{:tutorials:t21:img:t21_deformation_segment_6050006.png?650}}
  
 The definition of the next segments should follow the settings below: The definition of the next segments should follow the settings below:
Line 138: Line 139:
 The complete treatment data are shown below. The complete treatment data are shown below.
  
-{{:tutorials:t21:img:t21_deformation_treatment_6011003.png?650}}+{{:tutorials:t21:img:t21_deformation_treatment_6050006.png?650}}
  
 ==== Deactivation of the volumetric misfit ==== ==== Deactivation of the volumetric misfit ====
Line 144: Line 145:
 As previously mentioned, some volumetric misfit might be present related to the precipitates appearing in the grains, decreasing thus their nucleation rate. However, the stress introduced during the applied deformation can cancel this effect. To account for this in MatCalc, clicking on **'Global' -> 'Phase status'** and select the **'Nucleation' -> 'Controls'** tab. Put a checkmark at **'ignore misfit stress during deformation'** for both precipitate phases. Click on 'OK' to close the window. As previously mentioned, some volumetric misfit might be present related to the precipitates appearing in the grains, decreasing thus their nucleation rate. However, the stress introduced during the applied deformation can cancel this effect. To account for this in MatCalc, clicking on **'Global' -> 'Phase status'** and select the **'Nucleation' -> 'Controls'** tab. Put a checkmark at **'ignore misfit stress during deformation'** for both precipitate phases. Click on 'OK' to close the window.
  
-{{:tutorials:t21:img:t21_ignore_misfit_deform_2017.png?650}}+{{:tutorials:t21:img:t21_ignore_misfit_deform_6050006.png?650}}
  
 ==== Kinetic simulation ==== ==== Kinetic simulation ====
  
-Click on **'Global' -> 'Buffers' -> 'Create'** to create a new buffer with the name **'Deformation'**. Afterwards, click on **'Calc' -> 'Precipitation kinetics'** and select **'deformation'** in **'from tm treatment:'** field. Start the calculation by clicking on **'OK'**. The results of the precipitation kinetics calculation are shown now with the blue curve.+Click on **'Global' -> 'Buffers' -> 'Create'** to create a new buffer with the name **'Deformation'**. Afterwards, click on **'Calc' -> 'Microstructure simulation'** and select **'deformation'** in **'from tm treatment:'** field. Start the calculation by clicking on **'OK'**. The results of the precipitation kinetics calculation are shown now with the blue curve.
  
 {{:tutorials:t21:img:t21_deformation_phase_fraction_6011003.png?650| MatCalc plot}} {{:tutorials:t21:img:t21_deformation_phase_fraction_6011003.png?650| MatCalc plot}}
 +
 {{:tutorials:t21:img:t21_deformation_number_density_6011003.png?650| MatCalc plot}} {{:tutorials:t21:img:t21_deformation_number_density_6011003.png?650| MatCalc plot}}
 +
 {{:tutorials:t21:img:t21_deformation_mean_radius_6011003.png?650| MatCalc plot}} {{:tutorials:t21:img:t21_deformation_mean_radius_6011003.png?650| MatCalc plot}}
  
tutorials/t21.1565714356.txt.gz · Last modified: 2019/08/13 18:39 by pwarczok
 
Recent changes RSS feed Donate Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki