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Abstract 

In this work, mechanical properties of aluminium alloys are described based on the current 

microstructure. Physically based models are combined with semi-empirical creep models to 

describe the plastic material behavior over an extended temperature and strain rate range. 

To integrate these models into a commercial FEA-Software, they are suitably simplified to 

ensure acceptable computational times for the description of complex components. These 

models are denoted in the work as ´Simple MicroStructure Evolution (sMSE) model´ and can 

be used as an underlying material model in, e.g., Abaqus and Ansys to calculate residual 

stresses in Al-cast alloys, for example. 

Another focus of this work is the investigation of the deformation characteristics of binary Al-

Mn, Al-Cu and Al-Zn alloys. The influence of the dissolved atoms on the yield stress and on the 

plastic deformation behavior is investigated. An advanced 3-Internal-Variables-Model (3IVM) 

is used to model the evolution of dislocation densities in the cell interior and cell wall. The 

model calibration is based on experimentally determined flow curves. 

  



Kurzfassung 

In dieser Arbeit werden mechanische Eigenschaften von Aluminiumlegierungen mit den 

vorliegenden Mikrostrukturzuständen verknüpft. Physikalisch basierte Modelle werden mit 

teils empirischen Kriechmodellen kombiniert, um plastisches Materialverhalten in einem 

erweiterten Temperatur- und Dehnratenbereich beschreiben zu können. Um diese Modelle in 

eine kommerzielle FEA-Software integrieren zu können, werden sie geeignet vereinfacht, um 

eine akzeptable Rechenzeiten für die Beschreibung komplexer Bauteile gewährleisten zu 

können. Diese Modelle werden in der Arbeit als ´Simple MicroStructure Evolution (sMSE) 

model´ zusammengefasst und dieses kann als zugrundeliegendes Materialmodell in Abaqus 

verwendet werden, um beispielsweise Eigenspannungen in Al-Gusslegierungen berechnen zu 

können.  

Ein weiterer Schwerpunkt dieser Arbeit ist die Untersuchung der mechanischen Eigenschaften 

von binären Al-Mn, Al-Cu und Al-Zn Legierungen. Dabei wird der Einfluss der gelösten Atome 

auf die Streckgrenze und auf die plastische Verformung untersucht. Ein erweitertes 3-Internal-

Variables-Model (3IVM) wird verwendet, um die Entwicklung der Versetzungsstrukturen im 

Zellinneren und in der Zellwand zu modellieren. Die Materialkalibrierung erfolgt durch 

experimentell ermittelte Fließkurven. 
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1 Introduction  

Socio-political and economic reasons motivate leading industrial companies to develop 

their products further to tap into new markets. Advanced material properties are 

constantly in demand to meet the increased requirements, such as CO2 savings. The 

understanding of the underlying microscopic effects on material behavior is essential to 

specifically adapt material production routes or downstream processing steps. However, 

before well-established processes are changed, in general, laboratory experiments and 

computational simulations are performed to minimize the risk of failure. Due to the 

complexity of such process routes, sophisticated material models are mandatory. In the 

last decades, a variety of well-established microstructure models have been published and 

implemented in thermo-kinetic software packages, such as MatCalc, and underlay 

constant development and improvement. This thesis models the mechanical properties of 

various aluminium alloys, where stress-strain relations are investigated in a wide 

temperature- and strain-rate range. Thermal stress contributions, such as solid solution 

strengthening or precipitation strengthening, are taken into consideration, as well as the 

athermal stress contribution based on the dislocation density evolution. A suitable 

mathematical framework has been developed, experimentally validated, and integrated 

in the MatCalc software package. This work addresses both, academic issues, such as the 

influence of solutes in dilute binary aluminium alloys, and industry-related issues, such as 

the simulation of residual stresses of complex components in low calculation times.  
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2 Objectives  

This thesis consists of three main sections, which can be considered separately, but are 

subordinate to a common topic – the simulation of plastic deformation in aluminium 

alloys. In the first part after the theoretical background (section 4.1), a new framework for 

the combination of physically based modelling of stress strain curves with empirical creep 

mechanisms is introduced. The necessity of this implementation in the MatCalc framework 

stems from an industrial project, where the aim was to calculate residual stresses in a 

temperature- and strain rate range, where creep becomes the dominant deformation 

mechanism. Since suitable material models were not available as input parameters for the 

FEM analysis, a condensed form of microstructure evolution models was developed and 

used in the Abaqus simulations, which is described in the second section of this thesis 

(section 4.2). The last part is mainly of academic interest and discusses the impact of 

solutes on both, the thermal stress contribution, which determines the yield stress, and 

the athermal stress contribution, which originates from the dislocation density evolution 

(section 4.3). The first chapters provide an overview of the underlying models whereas 

detailed derivations and descriptions are given in the journal papers in the Appendix. 
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3 State of the art 

Uniaxial loading tests are usually performed to describe macroscopic material properties. The 

mechanical properties are determined by the microstructure and are strongly dependent on 

the test conditions. First, stress and strain are defined, followed by the description of the 

different stages of deformation. Moreover, the underlying models for the flow curve 

simulation are reviewed, including the athermal and the thermal stress contribution. In 

addition, the different creep mechanisms are introduced and its stress- and strain rate relation 

are illustrated in so-called deformation mechanism maps. This chapter should not be seen as 

a complete overview of all available models in literature, but as an introduction to the models 

which are used in this work.  

3.1 Macroscopic deformation behavior 

In this work, true stress σ and true strain φ are used for analyzing deformation tests and as 

simulation input parameters. The true stress is defined by  

𝜎 =
𝐹

𝐴
, (1) 

where F is the measured force and A is the actual cross section, which is defined by  

𝐴 = 𝐴0𝑙0/𝑙. 𝑙0 is the initial length of the specimen, while 𝑙 defines the measured length during 

the deformation process. The true strain φ is defined by  

𝜑 = ln (
𝑙

𝑙0
). (2) 

The Taylor factor M was first derived by Taylor [1] and relates the true stress with the resolved 

shear stress τ, acting on the glide planes of polycrystalline materials with  

𝜎 = 𝑀 ∙ 𝜏. (3) 

According to Kocks [2], M = 3.06 for fcc materials. The relation between polycrystal 

deformation and single crystal deformation is also discussed in [3] and [4]. The macroscopic 

strain 𝜑 is related to the resolved strain 𝛾 by 

𝜑 = 𝛾/𝑀.  (4) 
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A scheme of a typical flow curve is shown in Figure 1 (a), starting from the yield stress 𝜎0. With 

increasing strain, the plastic stress 𝜎p increases, until a saturation stress 𝜎sat is reached, if only 

Stage III hardening is considered (see section 3.2). Figure 1 (b) shows a Kocks-Mecking plot, 

which relates the hardening rate 𝜃 =
𝑑𝜎

𝑑𝜀
 with the stress σ, where 𝜃0 is the initial hardening 

rate at the yield stress 𝜎0. 𝜃 linearly decreases until the saturation stress is reached.  

  
(a) (b) 

Figure 1. Scheme of (a) a flow curve and (b) a Kocks-Mecking plot for Stage III hardening. 

3.2 Stages of deformation  

Common stress-strain curves, as shown schematically in Figure 2 (a), can be divided into five 

stages, as suggested by [5] and [6]. For the transition of each deformation state, a Kocks-

Mecking plot is often used, as described in the previous subchapter. In Stage I, which is also 

called Easy Glide, only one slip system is active and appears only in single crystals and is 

characterized by a very low hardening rate. At higher strains, secondary slip systems are 

activated, and the hardening rate rapidly increases in Stage II due to pile up of dislocations. 

The initial strengthening rate 𝜃0 is about G/20 [7], which is about 1200-1500 MPa at room 

temperature for pure Al. Solutes within the Al matrix can affect 𝜃0, as analyzed in this work. 

In Stage III, the hardening rate linearly decreases as shown in Figure 2 (b). The stress increases 

due to strengthening effects, but at the same time, recovery by cross slip of screw dislocations 

and climbing of edge dislocations take place until these effects compensate each other and a 

saturation stress is reached. The slope of the Kocks-Mecking plot represents the rate of 

dynamic recovery and is, therefore, strongly microstructure-, temperature- and strain rate- 

dependent. Stage IV can be interpreted as a formation of a substructure, where wall 
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dislocations are generated, which increase the misorientation of two cells. Some authors 

describe a subsequent stage V, where the stress saturates [8]. 

  
(a) (b) 

Figure 2. Schemes of (a) a true stress strain curve and (b) a Kocks-Mecking plot. 

3.3 Deformation mechanisms 

When a material is plastically deformed, many deformation mechanisms take place 

simultaneously. However, one mechanism dominates and determines the mechanical 

properties. Deformation maps, as described by Frost and Ashby [9], provide an overview of 

the active mechanisms for specific combinations of stress, strain rate and temperature, as 

shown exemplarily in Figure 3 for pure Al and a grain diameter of 10 μm. Dislocation glide is 

generally dominant at low temperatures, while power law creep and diffusional flow, which 

are diffusion-controlled mechanisms, become dominant at higher temperatures. In this 

region, edge dislocations start to climb due to the motion of vacancies and is therefore time 

dependent. Consequently, these regions are characterized by a high strain rate dependency. 

The creep mechanisms, such as power law creep, diffusional flow and the power law 

breakdown are described in chapter 3.7.  



6 

 

 

Figure 3. Deformation mechanism map for pure Al, including the dislocation glide range, the 

power law creep range, the power law breakdown area, and the diffusional flow area. 

(Reproduced from Frost and Ashby [9])  

3.4 Constitutive stress-strain relations  

Constitutive models can be used to reproduce temperature- and strain rate-dependent stress-

strain relations, but in general without taking the microstructure development into account. 

Examples for constitutive models are the Ludwik approach [10], the Voce type approach [11], 

the Johnson-Cook model [12], the Zerilli–Armstrong model [13], or the model of Khan and 

Huang [14]. The advantage of using constitutive models, especially when included in Finite 

Element Analyses (FEA) tools, is the low calculation time. Furthermore, if the number of 

different experimental setups is limited, one set of calibration parameters leads to a good 

reproduction of stress strain curves. In general, many constitutive models are based on the 

product form of the temperature- and strain rate-dependent function f(T, 𝜀̇) and the strain 

dependent reference stress 𝜎ref(𝜀) 

𝜎(𝑇, 𝜀̇, 𝜀) = 𝑓(𝑇, 𝜀̇) ∙ 𝜎ref(𝜀). 
(5) 

Examples of this product form are given in [15]. If the microstructure changes during the 

thermo-mechanical treatment, constitutive models are not suitable anymore and state 

parameter-based yield strength models are used, like [16–32]. Examples for state parameters 
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are the dislocation density, the solute content within the matrix, the radius, and the phase 

fraction of the precipitates. In the following, the model of Kreyca is used [33] as a starting 

point and extended by the creep relations. The thermal and the athermal stress contributions 

are distinguished, as described in the following subchapters. 

3.5 Thermal stress contribution 

Since mobile dislocations 𝜌m carry plastic strain, the interaction of these dislocations with 

obstacles within the glide plane determine the rate of flow. The strain rate 𝜀 ̇is given by the 

Orowan equation [34] 

𝜀 ̇= 𝜌m ∙b∙v, (6) 

where b is the Burger’s vector, and v is the velocity of the dislocation, which is given by the 

Arrhenius Ansatz  

v = c∙ (exp (
−∆𝐺

𝑘B𝑇
)). (7) 

c is the speed of sound, ∆𝐺 is the Gibbs energy, 𝑘B is the Boltzmann constant and T is the 

temperature. The Gibbs energy depends on the distribution and the strength of the obstacles 

and is often assumed to be 

∆𝐺=∆𝐹 ((1 − (
𝜎

𝜎̂
)
𝑝

))

𝑞

, (8) 

where ∆𝐹 is the activation energy. The mechanical threshold 𝜎̂ is the stress, which is needed 

to overcome the energy barrier at 0 K. The exponents q and p characterize the shape of the 

energy barrier. In this work, a regular array of box-shaped obstacles is assumed, leading to 

p = q = 1. Combining Equations (6),(7) and (8) leads with ∆𝐹 = 𝛼𝐺𝑏2 [9] to 

𝜎 = 𝜎̂ (1 − (
𝑘B𝑇

∆𝐹
ln (

𝜀̇0

𝜀 ̇
))

1

𝑞
)

1

𝑝

. (9) 

𝛼 is the strengthening coefficient and 𝜀0̇ = 𝜌m ∙ 𝑏 ∙c, which can be treated as a constant in a 

first approximation, if 𝜌m is substituted by the equilibrium dislocation density 𝜌eq. This can be 

justified for the present high activation energy ∆𝐹 and is in the same range of magnitude 
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compared to values from literature [9]. The physical meaning of Equation (9) is limited, 

because the stress 𝜎 becomes zero at a critical temperature. Kreyca suggests following 

equation instead, whereas the subscript ‘lt’ emphasizes the validity at low temperatures, 

when dislocation motion is characterized by glide processes  

𝜎lt = 𝜎̂·exp (
−𝑘B·𝑇

∆𝐹𝜎0
lt · ln (

𝜀̇0

𝜀̇
)). (10) 

The subscript ‘σ0’ refers to the initial yield stress. The mechanical threshold 𝜎̂ is defined by 

the sum of a basic stress, solid solution hardening (see section 3.5.1), precipitation hardening 

(3.5.2), cross core diffusion hardening (3.5.3), grain size hardening and sub-grain size 

hardening in the absence of thermal activation. Figure 4 shows the thermal activation factor 

𝜎/𝜎̂ for different values of p and q of Equation (9) as well as the low temperature 

approximation of Equation (10) as a function of the homologous temperature T/𝑇m. 

 

Figure 4. Thermal activation factor 𝜎/𝜎̂ as a function of the homologous temperature T/𝑇𝑚 for 

different combinations of p and q of Equation (9). The approximation represents 𝜎𝑙𝑡 of 

Equation (10). 

At high temperatures, dislocation climb becomes dominant and the following stress 

contribution can be used [33] 
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𝜎ht = (𝜎̂·
𝜀̇∗·𝑘B·𝑇·(𝛼·𝑏·𝐺)

2

2𝑏𝑐∆𝐹𝜎0
ht· 𝑒𝑥𝑝(−

∆𝐹𝜎0
ht

𝑘B𝑇
)

)

1

𝑛

. (11) 

G is the shear modulus, and the exponent n of the power law equation varies between 3 and 

10 [9]. For appropriate stress-strain simulations, the strain rate dependency is modified by 

𝜀̇∗ = 𝜀̇𝑛𝜀̇  in the present framework. The activation energies ∆𝐹𝜎0
lt  and ∆𝐹𝜎0

ht depend on the 

effective solute concentrations in the matrix and are, therefore, strongly microstructure-

dependent. The total thermal stress 𝜎0 is given by the summation rule  

𝜎0 = ((
1

𝜎lt
)
𝑛𝑐
+ (

1

𝜎ht
)
𝑛𝑐
)

1

𝑛𝑐
, (12) 

where 𝑛c is a coupling coefficient. In the following subchapters, the contributions of solid 

solution strengthening, precipitation strengthening, and the cross-core diffusion effect are 

discussed.  

3.5.1 Solid solution strengthening 

The addition of solute atoms strengthens pure Al and increases the yield stress. Solid solution 

strengthening is caused by parelastic-, dielastic- and chemical interaction forces of the solutes 

and dislocations [35]. Parelastic interaction is caused by the interaction of stress fields of 

dislocations with the elastic distortion of the matrix, caused by solute additions [36]. Dielastic 

interaction is caused by a different shear modulus in the vicinity of a solute, which leads to a 

change in the dislocation line energy. Solutes can lower the stacking fault energy leading to 

an increased necessary stress for a dislocation to break free from a solute atmosphere 

(chemical interaction) [35,36]. 

In general, strong-pinning models (Friedel [37], Fleischer [38]) and weak-pinning models (Mott 

[39], Labusch [40]) can be distinguished. In the Friedel model, each solute is considered as an 

independent obstacle that pins the dislocation. The critical stress 𝜏𝑐 is a function of the spacing 

of solutes, defined by the Friedel length [35], with 

𝜏𝑐
𝐹 = 𝐹max

3/2 𝑐1/2

𝑏(2𝐸L)1/2
. (13) 

The maximum interaction force is defined by [41] 
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𝐹max = 
√3

2
·
(1+𝜈)

(1−𝜈)
·G·𝑏2|𝜀m|. 

(14) 

𝜈 is the Poisson’s ratio, 𝜀m is the misfit strain between solute and matrix atoms and the 

dislocation line tension 𝐸L= 
1

2
·𝐺·𝑏2 [42]. 

Labusch considers the interaction of many solutes around a dislocation and uses a distribution 

function, describing the number of interactions of a specific strength with the unit length of a 

dislocation at a given stress [35]. The critical stress is [43] 

𝜏c
L = (

𝑐2𝑈max
4

𝑤𝑏9𝐸L
)
1/3

. (15) 

𝑤 = 5𝑏 and 𝑈max is the maximum solute-dislocation interaction energy.  

As Leyson demonstrated in [44], the Labusch model controls the strengthening for 

concentrations greater than 10-4 and temperatures above 78 K for Al alloys. Therefore, the 

Labusch model is used for the simulation of solid solution strengthening in this work. 

3.5.2 Precipitation strengthening 

For the calculation of the precipitation strengthening contribution, knowledge of the number 

density, the radius, and the phase fraction of the existing precipitates is mandatory. The 

precipitation evolution models have been developed by Svoboda, Fischer, Fratzl and 

Kozeschnik (SFFK), and are described in detail in [45–47]. The basic equations are summarized 

in the following. The steady-state nucleation rate is defined as the number of newly formed 

precipitate nuclei per unit volume and unit time as [48,49]  

𝐽 = 𝑁0·𝑍·𝛽
∗·𝑒

−𝐺∗

𝑘B𝑇. (16) 

𝑁0 is the number of available nucleation sites, 𝑍 is the Zeldovich factor, 𝛽∗ is the atomic 

attachment rate, and 𝐺∗ is the critical nucleation energy. The Zeldovich factor is expressed as 

[48,50]  

𝑍 =  (
𝑏6

64𝜋2𝑘B𝑇

(
𝑑m
𝜈𝛼
)
4

𝛾3
)

1

2

. (17) 

𝜈𝛼 represents the molar volume of the precipitate and 𝛾 is the specific interfacial energy. The 

critical nucleation energy is given by 
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𝐺∗ =
16𝜋

3

𝛾3

(
𝑑m
𝜈𝛼
)
2. (18) 

𝑑m is the driving force, which exists if the total Gibbs energy of the system can be lowered by 

the formation of a new phase. For the calculation of the driving force, thermodynamic 

databases are necessary, which are included in MatCalc (www.matcalc.at), a software package 

which is used for the simulations in this work. The atomic attachment rate reads 

𝛽∗ =
4𝜋𝑟crit

2

𝑏4
𝐷eff, (19) 

with the critical radius 

𝑟crit =
2𝛾
𝑑m
𝜈𝛼

. (20) 

Since the nucleation and the growth of precipitates are diffusion-controlled processes, the 

effective matrix diffusion coefficient 𝐷eff plays a key role in the microstructure evolution. The 

effective diffusion coefficient includes trapping of vacancies at solute atoms [51], excess 

vacancies [52] and dislocation pipe diffusion enhancement [53,54]. The excess vacancies are 

included with 

𝐷eff = 𝐷0·exp (
−𝑄

𝑅·T
) · (

𝑋Va

𝑋Va,eq
). (21) 

𝑋Va is the current vacancy concentration and 𝑋Va,eq is the equilibrium vacancy contribution. 

A comprehensive discussion of all precipitation strengthening mechanisms, which are 

included in this work, is given by Ahmadi [55]. In the following, a summary of these models is 

given, excluding detailed mathematical expressions. Precipitation strengthening is based on 

the interaction of moving dislocations with precipitates within the matrix. In general, small 

coherent precipitates are sheared by moving dislocations, while dislocation loops, which are 

called Orowan loops, are formed around bigger, incoherent precipitates.  

When a dislocation bows out at spherical precipitates because of an external force, the 

equilibrium between the acting shear stress, the dislocation line tension T, the dislocation 

bending angle (outer cut-off angle) 𝜓 and the precipitate resistance force F delivers 

𝜏𝑏𝐿 = 2𝑇 ∙ cos (
𝜓

2
) =  𝐹. (22) 

http://www.matcalc.at/
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L is the distance between two particles, as shown in Figure 5. If the critical angle 𝜓c is between 

120°≤ 𝜓c ≤ 180°, the precipitate is denoted as weak, whereas the particle is considered as 

strong when 𝜓c is between 0°≤ 𝜓c ≤ 120°. 

For weak and shearable precipitates, Equation (22) becomes  

𝜏 =
2𝑇

𝑏𝐿eff
∙ cos (

𝜓c

2
), (23) 

when the effective distance 𝐿eff is used. 𝐿eff is visualized in the scheme in Figure 5. 𝐿eff ≥ 𝐿 

for weak precipitates because a dislocation cuts a precipitate when the angle 𝜓c is between 

120° and 180° and is released from the particle earlier.  

 

Figure 5. Distance between two precipitates for strong and weak shearable precipitates, 

adapted from Ahmadi [55].  

The relation between 𝐿S and 𝐿eff reads [55] 

𝐿s = 𝐿eff ∙ [cos (
𝜓c

2
)]

1

2
. (24) 

For weak particles, the combination of Equations (22),(23) and (24) leads to 

𝜏 =
2𝑇

𝑏𝐿S
∙ (
𝐹m

2𝑇
)

3

2
, (25) 

where 𝐹m is the maximum interaction force between the precipitates and the dislocation with 

𝐹m = 2𝑇 cos (
𝜓c

2
). For strong particles the shear stress 𝜏 is derived by 
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𝜏 = 𝐽
𝐹m

𝑏𝐿S
, (26) 

where J is a correction parameter for a random arrangement of particles. 𝐹m is strongly 

dependent on the prevailing interaction mechanisms, which are discussed in detail in [55]. 

3.5.3 Cross-core diffusion effect 

Material strengthening due to the cross-core diffusion effect is based on the interaction of 

diffusing solutes with the stress fields of dislocations, leading to dynamic strain aging (DSA). 

Possible negative strain rate sensitivity can lead to plastic material instabilities due to local 

material softening [56]. The Portevin-LeChatelier effect is a well-known example for DSA 

leading to serrated stress-strain behavior. The cross-core diffusion effect is included to the 

present framework as developed by Curtin et al. [56]. It is based on single atomic jumps of 

solutes from the compression side to the tension side in the core of a dislocation, as 

∆𝜏s(𝜀̇) =  𝛼 (
2𝑐0∆𝑊̅̅ ̅̅ ̅

√3𝑏3
) tanh (

∆𝑊̅̅ ̅̅ ̅

2𝑘B𝑇
) [1 − 𝑒

−6cosh(
∆𝑊̅̅ ̅̅ ̅

2𝑘B𝑇
)г𝑐

Ω

𝜀̇]. (27) 

α = 0.56, 𝑐0 is the bulk solute concentration, ∆𝑊̅̅ ̅̅ ̅ is the average binding energy difference 

between the core compression and tension sites, Ω is a constant in this framework, гc is the 

reference core transition rate with 

г𝑐 = 𝜈0𝑒
−∆𝐻c
𝑘B𝑇 , (28) 

where 𝜈0 is the attempt frequency and ∆𝐻c is the average activation enthalpy for transitions 

from tension to compression and vice versa. Since the cross-core diffusion effect is a diffusion-

driven process, higher temperatures and smaller strain rates facilitate cross-core diffusion 

strengthening. For the calculation of solid solution strengthening and the activation energies 

∆𝐹 (see section 3.5), the effective concentration of solutes on the tension side of a dislocation 

core is relevant, given by [56] 

𝑐eff = 𝑐0 + 𝑐0 tanh (
∆𝑊̅̅ ̅̅ ̅

2𝑘B𝑇
) [1 − 𝑒

−6cosh(
∆𝑊̅̅ ̅̅ ̅

2𝑘B𝑇
)гc

Ω

𝜀̇]. (29) 

The strengthening contribution ∆𝜏s is added to the mechanical threshold 𝜎̂.  
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3.6 Athermal stress contribution  

The athermal stress contribution describes the hardening effect, which is directly related to 

the total dislocation density 𝜌tot and is given by the Taylor equation 

 𝜎p = 𝑔1·√𝜌, (30) 

with 𝑔1 = 𝛼·𝑀·𝑏·𝐺. The following subchapters describe different ways to model dislocation 

generation and annihilation. Please note that this selection is not exhaustive but is an 

important basis of the models used in this work. Starting with the Kocks-Mecking approach 

[16], an average dislocation density is considered, where a dislocation generation term and 

dynamic recovery are considered.. The Kreyca model also includes static recovery, based on 

climbing processes. The 3IVM, which was first developed by Roters et al. [20], distinguishes 

between mobile dislocations and immobile dislocations in the cell interior and cell walls. 

3.6.1 The Kocks Mecking model 

The average dislocation density evolution due to plastic deformation can generally be 

described as  

𝑑𝜌

𝑑𝜀
= 

𝑑𝜌+

𝑑𝜀
+ 

𝑑𝜌−

𝑑𝜀
, (31) 

where 
d𝜌+

d𝜀
 accounts for the dislocation generation, while 

d𝜌−

d𝜀
 represents dislocation 

annihilation by dynamic recovery. The generation term is related to the mean free path L, as 

𝑑𝜌+

𝑑𝜀
=

𝑀

𝑏𝐿
. (32) 

L is inversely proportional to the square root of the dislocation density as 

𝐿 =
𝐴

√𝜌
, (33) 

where A is a proportional constant. Equation (31) becomes with Equation (32) 

𝑑𝜌

𝑑𝜀
= 𝑘1√𝜌 − 𝑘2𝜌, (34) 

with 𝑘1=M/bA. With Equation (30), Equation (34) can be alternatively written as 
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𝑑𝜎

𝑑𝜀
= 

𝑘1𝑔1

2
−
𝑘2

2
𝜎, (35) 

which is equivalent to the Voce form [57].  

3.6.2 The Kreyca model 

Kreyca and Kozeschnik [33] used the following extended one-parameter model of Kocks and 

Mecking to calculate the temperature- and strain rate-dependent dislocation density 

evolution, as 

d𝜌

d𝜀
=  
d𝜌+

d𝜀
+ 
d𝜌−

d𝜀
+
d𝜌s

−

d𝜀
=   

𝑀

𝑏𝐴
√𝜌 − 2𝐵𝑀

𝑑crit
𝑏
𝜌 − 2𝐶𝐷d

𝐺𝑏3

𝜀̇𝑘𝑇
(𝜌2 − 𝜌eq

2 ). (36) 

A, B and C are material-specific coefficients, 𝜌eq is the equilibrium dislocation density and 𝑑crit 

is the critical annihilation distance between two dislocations [58] with 

𝑑crit = 
𝐺𝑏4

2𝜋(1−𝜈)𝑄vac
. (37) 

𝑄vac is the vacancy formation energy. In addition to the annihilation of dislocations due to 

cross-slip processes at low and intermediate temperatures, vacancy-assisted climb 
d𝜌𝑠

−

d𝜀
 occurs 

at high temperatures. The latter annihilation process represents static recovery, which is 

marked by the index ‘s’. According to Kreyca [33], A(𝜀,̇ 𝑇), B(𝜀,̇ 𝑇) and C(𝜀,̇ 𝑇) can be related to 

the initial slope 𝜃0 and the saturation stress 𝜎sat of a stress-strain curve by  

𝐴 =  
𝑔1𝑀

2𝑏𝜃0
 , (38) 

𝐵 =  
𝑏𝜃0

𝜎sat
lt 𝑑crit𝑀

 , (39) 

𝐶 =  
𝑔1
2

(𝜎sat
ht )

3

𝜃0𝜀̇𝑘𝑇

𝐷d𝐺𝑏
3 , (40) 

Like 𝜎0
lt and 𝜎0

ht in Equations (10) and (11), the saturation stress can be distinguished in 𝜎sat
lt  

and 𝜎sat
ht  for two temperature regimes to consider both, thermally activated glide at low 

temperature as well as vacancy-assisted climb at high temperature. Since θ0 and 𝜎sat are 

temperature- and strain rate-dependent in the model of Kreyca, the parameters A, B and C 
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are no longer constants anymore in contrast to the Kocks-Mecking approach. For detailed 

explanation of θ0, σ∞
lt  and σ∞

ht, see [33]. 

3.6.3 The 3-Internal-Variables-Model (3IVM) 

The 3IVM, which was originally developed by Roters et al. [59], distinguishes between the 

mobile dislocations, the immobile dislocations in the cell interior and the immobile 

dislocations within the cell walls. Internal dislocations 𝜌int are defined as the sum of mobile 

dislocations 𝜌m and immobile dislocations 𝜌im in the cell interior. Mobile dislocations are 

produced at dislocation sources and move through the cell interiors and cell walls until they 

get locked or annihilated. The generation of mobile dislocations (𝜌̇m
+ ) is inversely dependent 

on the effective mean free path, where the interaction with other internal dislocations as well 

as wall dislocations, the grain diameter and precipitates are taken into consideration. Mobile 

dislocations are reduced by annihilation due to dislocation glide (𝜌̇m,ann
− ), the formation of 

dipoles (𝜌̇m,dip
− ) and locks (𝜌̇m,lock

− ). Dipoles form, if two antiparallel mobile dislocations 

interact, but are too far away to annihilate. Dislocation dipoles are swept into the cell walls 

and do not contribute to the plastic deformation anymore. Dislocation locks can form, when 

two dislocations come closer to each other than a critical distance and move on different slip 

planes. At higher temperatures, mobile dislocations annihilate due to climbing processes 

(𝜌̇m,climb
− ). Since all experiments are conducted at room temperature in this framework, 

climbing processes can be neglected. The overall evolution equation of the mobile dislocation 

density is 

𝜌̇m = 𝜌̇m
+ − 𝜌̇m,ann

− − 𝜌̇m,dip
− − 𝜌̇m,lock

− − 𝜌̇m,climb
− . (41) 

The production rate of immobile dislocations 𝜌im in the cell interior is equal to the formation 

rate of dislocation locks. These immobile dislocations can annihilate by climbing. 

Dipoles form inside the cells and are swept into the cell walls (𝜌w), as originally proposed in 

[60]. In the present framework, only diffusion-controlled climbing reduces the wall dislocation 

density. The overall wall dislocation density is given by the weighted sum of the internal 

dislocation density, 𝜌̇w,dip
+  and 𝜌̇dip

− . The total dislocation density is then  

𝜌tot = 𝑓ci·𝜌int(𝑡) + 𝑓cw·𝜌w(𝑡), (42) 
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where 𝑓ci and 𝑓cw are the volume fractions of cell interiors and cell walls. 

3.6.4 Microstructural influence on the athermal stress contribution 

The mechanical properties of a material are determined by the microstructure, including 

solutes, precipitates, or the grain size. The mechanical threshold concept is considered for 

calculating the yield stress, as described in section 3.5. Plastic deformation behavior is based 

on the motion of dislocations, where the formation of new dislocations is also dependent on 

microstructural features. A descriptive way to illustrate the influence of the microstructure on 

the athermal stress contribution is by using the KM plot.  

A decreasing slope of the KM plot due to solute additions can be interpreted as a decrease in 

the stacking fault energy and the attendant drop in the cross-slip probability of dislocations 

[61]. Since double cross slip results in a new Frank-Read source, as described in detail in [62], 

a decreased stacking fault energy facilitates the dynamic recovery of dislocations. A shift of 

the KM plot on the stress axis can also be explained by the influence of the critical annihilation 

distance for dynamic recovery, due to local solute concentration in the dislocation core [63].  

Besides influencing the yield stress by the Hall-Petch relation, the grain size has an impact on 

the strain hardening behavior. In the 3IVM, the grain size influences the effective slip length 

𝐿eff and therefore the generation term of the mobile dislocations. Since dislocation locks are 

formed by the immobilization of mobile dislocations, also 𝜌im increases with decreasing grain 

size. In contrast to the 3IVM, Ashby proposed in [64] to calculate immobile, geometrically 

necessary dislocations (GNDs) to ensure compatibility at grain boundaries, as  

𝜌grain
G ≅ 

𝜀̅

4𝑏𝑑
, (43) 

where 𝜀  ̅is the overall macroscopic strain of a polycrystalline material and d is the grain size. 

The additional stress contribution is calculated by the Taylor Equation (18). Goerdeler 

compared the 3IVM with the Ashby model for grain sizes between 1 μm and 1000 μm in [35], 

showing that the behavior of the stress-strain curves is in principle similar, but at low strains, 

the effect of grain size is less for the Ashby Ansatz, but increases more strongly with increasing 

strain.  

Precipitates affect the stress-strain behavior by influencing the mechanical threshold, as 

described in section 3.5, as well as by the influence of the athermal stress. Kreyca et al. [65] 

show for a 6061 Al alloy that the yield stress increases with increasing annealing time until 
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peak aging, but at the same time the strain hardening rate decreases. The analyzed 

temperatures in their work are between 25 °C and 400 °C, where the strongest effect occurs 

at a temperature of 200 °C. At 400 °C, the 𝛽′′ precipitates are already dissolved, leading to 

identical microstructures at the start of the deformation, independently of the aging time.  

 

Figure 6. Stress strain relations of a 6061 Al alloy for different annealing times and 

deformation temperatures, reproduced from [65]. 

The phenomenon of decreasing strain hardening rate with increasing precipitation 

strengthening until peak aging is also observed in [66–68]. Local softening of shearable 

precipitates is described by Hornbogen et al., [69,70]. The transition from shearable to non-

shearable precipitates can be seen in a change in the macroscopic work hardening behavior, 

characterized by an increase of the initial hardening rate as well as a steeper slope of the σ-θ 

plot, as shown in [71] and [72]. Different models exist, describing the impact of the 

precipitates on strain hardening, but only a few are reviewed here. In the 3IVM, non-shearable 

precipitates influence the effective slip length and have a direct influence on the mobile 

dislocation storage rate. Shearable precipitates are assumed to have negligible contribution 

to the dislocation storage process, which is also reported in [67,73]. Marthinsen et al. [74] 

take geometrically necessary dislocations into account and calculate 𝐿eff for the presence of 

non-deformable particles with 

𝐿eff = 
𝐶

√𝜌+(
𝐶

𝐿G
)
2
,  

(44) 
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where C is a constant and 𝐿G is the geometrical slip distance with  

(
1

𝐿G
)
2

= 𝜅2
2 ((

1

𝑑
)
2

+ (
2𝑓r

𝑟
)
2
). (45) 

𝜅2 ~ 1, d is the grain size, r is the particle radius and 𝑓r is the volume fraction. 

In the present work, the impact of precipitates is restricted to the mechanical threshold 

concept to keep the model simple. This is justified in this setup, since the part of the work 

where precipitates can form focuses on the calculation of the yield stress. 

3.7 Creep mechanisms 

For the simulation of internal stresses within complex structures, creep mechanisms need to 

be included to the framework which become dominant at high temperatures and low strain 

rates. An overview of the dominant creep mechanisms that are considered in this modelling, 

such as Coble creep, Nabarro Herring creep or Harper Dorn creep, is given in [75] and in the 

following subchapters. All creep mechanisms are diffusion-controlled, either by lattice 

diffusion, pipe diffusion or grain boundary diffusion. 

3.7.1 Power law creep 

The following phenomenological correlation between the strain rate 𝜀̇ and the applied shear 

stress 𝜎s is often successfully applied in literature [33,76,77]. It is also included within this 

framework as 

𝜀̇ =  
𝐴·𝐷tr·𝐺·𝑏

𝑘B·𝑇
· (
𝜎s

𝐺
)
𝑛

. (46) 

A is a material dependent coefficient, 𝐷tr is the tracer diffusion coefficient of the matrix-

forming element. Frost and Ashby [78] included dislocation core diffusion in addition to the 

bulk matrix diffusion due to missing explanations for the observed values of n and a huge 

variation in A of many orders of magnitude. Based on these two kinds of diffusion 

mechanisms, two rate equations are obtained. Dislocation core diffusion is dominant at low 

temperatures or high stresses, while lattice diffusion is the dominant mechanism at high 

temperatures and low stresses. Low-temperature creep, LT creep, and high-temperature 

creep, HT creep, are distinguished in Equations (47) and (48). The strain rate, 𝜀ḢT, for HT creep 

reads 
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𝜀ḢT = 
 𝐴HT·𝐺·𝑏·𝐷eff

𝑘B·𝑇
· (
𝜎S

𝐺
)
𝑛HT

, (47) 

where 𝑛HT is a constant and 𝐴HT is microstructure-dependent within the present framework 

(see section 4.1). The effective diffusion coefficient 𝐷eff is dominated by the migration of 

vacancies, which are created and annihilated at grain boundaries, dislocation jogs or Frank 

loops. A detailed description of the FSAK model is given in [52]. Based on the pipe diffusion 

effect, the effective diffusion coefficient is dependent on the dislocation density and therefore 

increases during the deformation. The strain rate 𝜀L̇T for the LT creep contribution is given by 

𝜀L̇T = 
 𝐴LT·𝐺·𝑏·𝐷c

𝑘B·𝑇
· (
𝜎S

𝐺
)
𝑛LT

. (48) 

𝐴LT is a microstructure-dependent parameter, 𝑛LT is a constant and 𝐷c is the dislocation core 

diffusion coefficient. For Al-based alloys,  𝐷c is given by [79] 

𝐷c = 0.11· exp (
𝑄tr−𝑄c

𝑅·𝑇
) ·𝐷tr, (49) 

𝑄tr and 𝑄c are the activation energies for bulk diffusion and dislocation core diffusion and R 

is the universal gas constant.  

3.7.2 Power law breakdown 

The stress-strain relation typically changes at high stresses (above 10–3𝐺), which is referred as 

power law breakdown (PLB). This regime is intensively discussed in [80,81] and only the 

empirical equation within the present framework is given here as 

𝜀𝑖̇ = 
 𝐴𝑖·𝐺·𝑏·𝐷𝑖
𝑘B·𝑇

· [sinh (𝛼′·
𝜎S

𝐺
)]
𝑛𝑖

. (50) 

The index ‘i’ refers to the prevailing deformation mechanisms and α′ defines the stress level 

at which the power law breakdown starts.  

3.7.3 Nabarro – Herring creep 

Diffusional flow, such as Nabarro-Herring creep and Coble creep, become the dominant 

deformation process at low applied stresses (𝜎/𝐺 < 10−5) and small grain sizes. The strain is 

caused by the diffusion of vacancies instead of the motion of dislocations. Nabarro-Herring 
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creep was first described, and therefore named by Nabarro and Herring [82]. The 

corresponding creep rate 𝜀ṄH, is given by [9] 

𝜀ṄH  =  
42·𝑏3·𝐷eff
𝑘B·𝑇·𝑑2

·𝜎S. (51) 

d is the grain size. The effective matrix diffusion coefficient, 𝐷eff, is utilized because lattice 

diffusion is the acting diffusion mechanism.  

3.7.4 Coble creep 

Coble creep is characterized by vacancy diffusion along grain boundaries instead of lattice 

diffusion [83]. The strain rate, 𝜀Ċ, is given as 

𝜀Ċ = 
42·𝑏3·𝜋·𝛿·𝐷gb

𝑘B·𝑇·𝑑3
·𝜎S, (52) 

where 𝛿 is the effective boundary thickness and 𝐷gb is the grain boundary diffusion 

coefficient, which is given as [84] 

𝐷gb = 1.4· exp (
𝑄tr−𝑄gb

𝑅·𝑇
) ·𝐷tr. (53) 

𝑄gb is the activation energy for grain boundary diffusion.  

3.7.5 Harper Dorn creep 

Harper et al. reported another deformation mechanism at low stresses and large grain sizes, 

in 1957 [85]. The Harper–Dorn regime has been identified and discussed in many studies 

[85–89]. The analysis of the deformation mechanism is beyond the scope of this work, but a 

phenomenological relation between the creep rate, 𝜀ḢD, and the applied stress, 𝜎s, is given as  

𝜀ḢD = 
𝐴HD·𝐷eff·𝐺·𝑏

𝑘B·𝑇
· (
𝜎s

𝐺
), (54) 

where 𝐴HD is a coefficient. 𝜀ḢD increases linearly with the applied stress, 𝜎s, (Newtonian 

nature) and the effective diffusion coefficient 𝐷eff indicates that self-diffusion is the dominant 

diffusion process.  



22 

 

3.7.6 Grain boundary sliding 

For small grains, grain boundary sliding (GBS) becomes the dominant deformation 

mechanism. In [90–94], an inverse dependency of the strain rate, 𝜀ĠBS, on squared or cubed 

grain size is assumed. A corresponding phenomenological equation of the creep rate is given 

as [90]  

𝜀ĠBS−GB = 
𝐴GBS−GB·𝐷gb·𝐺·𝑏

4

𝑘B·𝑇·𝑑3
· (
𝜎

𝐺
)
2

. (55) 

If the effective lattice diffusion coefficient 𝐷eff instead of grain boundary diffusion is the rate-

controlling mechanism, the following equation is used [90] 

𝜀ĠBS−L = 
𝐴GBS−L·𝐷eff·𝐺·𝑏

3

𝑘B·𝑇·𝑑2
· (
𝜎

𝐺
)
2

, (56) 

𝐴GBS−GB and 𝐴GBS−L are constants. If grain boundary sliding becomes the dominant 

deformation process, Coble creep and Nabarro-Herring creep can be reduced or even 

suppressed, as described by Lüthy et al. [90] for Ni. In Al, Coble creep and Nabarro Herring 

creep are overtaken at all temperatures at an applied normalized stress of 𝜎/𝐺 =  10−4.  
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4  Integrated model for plastic deformation  

4.1 Physical-constitutive computational framework 

In the previous subchapters, classical creep relations are reviewed. The correlation between 

the stress and the strain rate is determined by creep tests, where a constant stress is applied, 

and the resulting creep rates are measured. At the same time, the creep relations can be used 

to calculate the stresses at an applied constant true strain rate, as utilized in typical 

deformation tests. The LT creep, the HT creep, and the Harper–Dorn creep can be rewritten 

as 

𝜎𝑖 = (
𝑘B·𝑇·𝜀̇

𝐴𝑖·𝐷𝑖·𝐺·𝑏
)

1

𝑛𝑖 ·𝐺. (57) 

The indices ‘i’ express the associated pre-factors, A, the diffusion coefficients, D, and the 

exponents n. The stress response, resulting from the power law breakdown is 

𝜎𝑖 = sinh
−1 (

𝑘B·𝑇·𝜀̇

𝐴𝑖·𝐷𝑖·𝐺·𝑏
)

1

𝑛𝑖 ·
𝐺

𝛼′
. (58) 

By the reformulation of the Equations (51) and (52), Nabarro–Herring creep, 𝜎NH, and Coble 

creep, 𝜎C, are calculated, whereas stresses by 𝐷gb- and 𝐷l-controlled GBS are calculated by 

Equations (55) and (56). Kreyca [15] shows that the coefficient 𝐴HT is proportional to 

𝐴HT ∝
∆𝐹

𝐷eff·𝜎̂
·exp (

−∆𝐹

𝑅·𝑇
),  (59) 

Therefore, the creep behavior becomes dependent on the microstructure through the 

mechanical threshold, 𝜎̂, and the effective diffusion coefficient 𝐷eff. For a constant applied 

strain rate, the deformation mechanism which has the lowest deformation resistance 

determines the overall creep behavior. This behavior is achieved by the summation rule 

(
1

𝜎th
)
𝑛c

 = (
1

𝜎G
)
𝑛c
+ (

1

𝜎LT
)
𝑛c
+ (

1

𝜎HT
)
𝑛c
+ (

1

𝜎NH
)
𝑛c
+ (

1

𝜎C
)
𝑛c
+ (

1

𝜎GBS−GB
)
𝑛c
+ (

1

𝜎GBS−L
)
𝑛c
+ (

1

𝜎HD
)
𝑛c
. (60) 

𝑛c is the coupling coefficient. The total stress contribution is given by the sum of the thermal 

stress contribution 𝜎th of Equation (60), and the athermal stress contribution, 𝜎p, of Equation 

(10).  
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4.2 Simple MicroStructure Evolution (sMSE) 

The objective for the development of the simple MicroStructure Evolution (sMSE) model is to 

develop models that can be coupled with FE simulations and take microstructure evolution 

into account. Therefore, minimal calculation times and memory resources are required and 

microstructure evolution equations, which are described in section 3.5.2, need to be 

simplified. Complex structures are condensed into a simple system, which contains only two 

alloying elements (Mg, Si) and one specific precipitation phase, e.g., clusters or the β″ phase, 

but the extension to a multi-phase system is straightforward. No multi-component 

thermodynamic databases are necessary in the sMSE framework, in contrast to classical 

precipitation calculations based on, e.g., the CALPHAD method. Besides all the simplifications, 

the strengthening mechanisms, such as, solute solution strengthening, precipitation 

strengthening, and work hardening are included. The sMSE framework is successfully included 

in Abaqus, a standard FEA framework. A typical FEA solution procedure is shown in a flow 

chart in Figure 7, where T, 𝜀̇ and ∆t are the input parameters. Since the temperature gradient, 

𝑇̇, is not provided by all FEA softwares, it is written in brackets.  

 

Figure 7. Flow chart of an FEA procedure, indicating the update of the state parameters after 

the final iteration step dt. 

A specific microstructure is defined by its state-parameters 𝜒𝑡, which is directly coupled to the 

initial athermal stress 𝜎ath and the thermal stress 𝜎th, when a plastic deformation starts. After 

the final iteration step ∆t, the state parameters are updated. The final stress σ and the 
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derivatives  
𝑑𝜎

𝑑𝜀
 and 

𝑑𝜎

𝑑𝜀̇
 are returned every time the materials subroutine is called by the FEA 

program. A list of all state-dependent variables used in this work is given in Table 1 and assigns 

all variables to either thermal or athermal stress.  

Table 1. Assignment of all state variables to thermally activated 𝜎𝑡ℎ  and athermal 𝜎𝑎𝑡ℎ. 

Name 𝝈𝐭𝐡 𝝈𝐚𝐭𝐡 

Mg concentration within the fcc Al matrix 𝑋Mg
fcc x  

Si concentration within the fcc Al matrix 𝑋Si
fcc x  

Current vacancy concentration 𝑋Va x  

Number density of precipitates N x  

Radius of precipitates r x  

Dislocation density 𝜌  x 

To include the precipitate structure in the sMSE framework, the driving force for precipitate 

nucleation must be determined, as described in section 3.5.2. A driving force exists if the 

current solute concentration of the alloying elements, such as Mg and Si, exceeds the 

equilibrium concentration within the Al matrix. The equilibrium concentration is determined 

by the nominal Mg and Si mole fractions in the system, the stoichiometry of the precipitates 

and the equilibrium phase fraction of the precipitate, which is calculated by solving the 

solubility product by numerical methods. The nucleation of new precipitates can be evaluated 

based on the steady-state nucleation rate, which is given in Equation (16). The calculation of 

the mean radius, the precipitate growth and the coarsening process is described in detail in 

[95]. 

The basic idea of the precipitation hardening model within the sMSE framework is to simplify 

the most powerful strengthening contribution of the shearing mechanism, which is in general 

the coherency effect for 6xxx Al alloys, and the Orowan mechanism for non-shearable 

precipitates. For each state of microstructure, both contributions are calculated separately for 

all phases, and the mechanism which delivers the least contribution to the total stress, is 

assumed to be the operative one. To keep the model simple, no distinction between weak and 

strong precipitates is included. The implemented equations are given in [95].  
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4.3 Impact of solutes on plasticity  

The impact of solutes on the material’s properties is manifold. Both, the thermal and the 

athermal stress contributions, are affected by solutes. Solid solution strengthening, which is 

based on the Labusch approach in this setup, is included in the mechanical threshold concept, 

as introduced in section 3.5. Additionally, the energy of the thermal activation ∆𝐹lt of 

Equation (10) is dependent on the effective concentration, 𝑐eff, of the alloying elements, and 

is given by [96]  

∆𝐹lt = (𝑘1 + 𝑘2·𝑐eff
𝑛 )·𝐺𝑏3. (61) 

𝑘1 and 𝑘2 are constants and n is a fitting exponent. The effective concentration 𝑐eff.is used 

due to the cross-core diffusion effect, as introduced in 3.5.3.  

Since the generation of new mobile dislocations is inversely proportional to the mean free 

travel distance in the advanced 3IVM, solutes affect the dislocation structure as potential 

obstacles for moving dislocations. Consequently, also 𝜌im is influenced by solutes, because 

dislocation locks are formed by the immobilization of mobile dislocations. As the cross-slip 

probability can be reduced due to solute additions, the dislocation recovery is affected by 

solutes as well. This is clearly shown in the experiments and considered in the model 

calibration.  
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5 Experimental  

In the following subchapters, the experimental setups and selected results are summarized. 

All results are thoroughly discussed in section 9. Please note that a few parts of this chapter 

have been taken from the author’s journal publications [95] and [97]. 

5.1 Simple MicroStructure Evolution (sMSE) 

For modelling the microstructure evolution of the Al cast alloy of the industrial partner, a huge 

variety of experiments were conducted to find the optimum set of calibration parameters. 

However, this thesis focuses on the experiments which were made independently of the 

mentioned project to demonstrate the general validity and the potential of the state 

parameter-based sMSE framework. A detailed description of the experiments and the 

chemical composition of the analyzed commercial AA6082 aluminium alloy is given in [95] and 

in the Appendix. 

For a complete description of the microstructure evolution during various thermo-mechanical 

treatments, two main aspects need to be addressed: (i) the nucleation and growth kinetics of 

precipitates during artificial aging, and (ii) the work hardening behavior during deformation 

tests. Therefore, after a solution heat treatment, the specimens are artificially aged up to 8 h 

for the first experimental setup (i), and the present precipitates are characterized using a 

transmission electron microscope (TEM). The evolution of the precipitate microstructure is 

shown in the bright-field TEM images in Figure 8 for annealing times between 0.5 h and 8 h. A 

maximum length of approximately 30 nm is measured in the main growth direction after peak 

aging.  
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(a) (b) (c) 

   
 

(d) (e) (f) 

Figure 8. TEM images after annealing at 180 °C for (a) 0.5 h; (b) 1 h; (c) 2 h; (d) 3 h; (e) 4 h and 

(f) 8 h. 

The work hardening behavior is evaluated by compression tests in a high-speed quenching 

and deformation dilatometer DIL 805 A/D in the second experimental setup (ii). The material 

is solution heat treated at 530 °C for 5 min and helium-cooled with a cooling rate of 50 K/s to 

the deformation temperatures (25, 100, 200, 300, 400 and 500 °C). The specimens are held at 

this temperature for 10 s to achieve sufficient thermal equilibration. Each deformation test is 

repeated at least twice with applied true strain rates of 0.1 s-1 and 1 s-1. A detailed discussion 

of the flow curves of the compression tests are given in [95], where both, the experimental 

results as well as the sMSE simulations are shown.  

An EMCO-Test M1C 010 unit is used for the Brinell hardness measurements (HBW 1/10), 

where at least eight measurements are performed for each aging time. Figure 9 shows the 

Brinell hardness values of the 6081 Al alloy after annealing times between 0.5 h and 336 h at 

180 °C. After approximately 8 h, a peak value is reached, before the hardness decreases due 

to overaging (coarsening) of 𝛽′′ precipitates and a transformation of 𝛽′′, which is assumed to 

be the main hardening phase in the 6xxx series alloys [98] into 𝛽′. 
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Figure 9. Brinell hardness as a function of aging time at 180 °C. 

5.2 Impact of solutes on plasticity  

All binary Al-X alloys are cast in an inductive melting furnace using high purity Al 99.999 wt%, 

Cu 99.99 wt%, Zn 99.99 wt% and Mn 99.99 wt%. The ingots with the highest alloying 

concentrations are used as master alloys for preparing the more dilute alloys. The following 

Table 2, Table 3, and Table 4 describe the designation of the alloys and the measured 

concentrations in weight percent by a wet-chemical analysis. 

Table 2. Al-Cu alloys designation and measured concentration in wt%. 

 Cu 0.1 % Cu 0.4 % Cu 0.8 % Cu 1.6 % 

Cu (%) 0.13 0.44 0.86 1.56 

Table 3. Al-Zn alloys designation and measured concentration in wt%. 

 Zn 0.4 % Zn 0.8 % Zn 2 % Zn 4 % 

Zn (%) 0.46 0.94 2.17 4.81 

Table 4. Al-Mn alloys designation and measured concentration in wt%. 

 Mn 0.1 % Mn 0.2 % Mn 0.4 % Mn 0.8 % 

Mn (%) 0.11 0.23 0.43 0.82 
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The processing of the cylindrical specimens for the deformation tests follows the same 

procedure for all binary alloys: casting, homogenization, extrusion, additional heat treatment, 

and mechanical sample preparation. All heat treatments are carried out in a circulating air 

furnace (Carbolite Type 3508). The ingots are homogenized in the following way: Al-Cu – 

480 °C for 6 h; Al-Zn - 530 °C for 5 h; Al-Mn - 630 °C for 5 h. The homogenization temperatures 

are chosen to ensure a solid solution of the alloying elements within the Al matrix. The ingots 

are quenched in water to prevent the nucleation of precipitates. These quenching rates are 

high enough to avoid the formation of precipitates at these low alloying concentrations, as 

reported in [61,97,98]. To get rid of the casting microstructure, the ingots are extruded to a 

final diameter of 10 mm before additional heat treatment (Al-Cu - 530 °C for 1 h; Al-Zn -  

530 °C for 1 h; Al-Mn - 630 °C for 1 h), ensuring homogeneous and large grain sizes. Since this 

work focuses on the influence of solutes on both, the yield stress and the work hardening 

behavior, hardening due to fine grains is thus excluded. Finally, cylindrical specimens with a 

diameter of 5 mm and a length of 10 mm are fabricated.  

The compression tests to obtain the flow curves are performed on a dilatometer DIL 805 A/D. 

Prior to the deformation step, the specimens are solution heat treated at 530 °C for 5 min and 

helium-cooled with a cooling rate of 50 K/s to room temperature. Each deformation test is 

repeated at least twice with applied true strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1 and 1 s-1. 

To analyze the influence of solutes on the plastic deformation behavior, the yield stress Rp0.2 

and the initial hardening rate 𝜃0, which is the slope of the stress-strain curve at the yield point, 

are utilized. For a schematic illustration of 𝜃0, see, e.g., Kreyca and Kozeschnik [33]. Attention 

should be drawn to the fact that the evaluation of 𝜃0 is very sensitive to the applied data 

evaluation criteria and to the nature of the data in general. Still, this analysis delivers a trend, 

which can provide valuable insight into the dislocation evolution behavior.  

In the following, the results of the Al-Cu experiments are shown exemplarily, whereas all the 

other results are given in [97] and in section 9, where the MatCalc simulations are also 

included. Figure 10 (a) and (b) show the initial hardening rates 𝜃0 and the yield stresses as a 

function of the solute content and the strain rates. The results for pure Al are included to 

provide a baseline for better illustrating the influence of alloying elements on mechanical 

properties. 

The higher the amount of dissolved Cu within the Al matrix, the higher is the initial hardening 

rate 𝜃0, as indicated in Figure 10 (a). However, 𝜃0 slightly decreases with an increasing strain 
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rate, as shown in Figure 10 (b), which is different from the effects of Mn and the dependency 

in pure Al. 

  

(a) (b) 

Figure 10. Initial hardening rate 𝜃0 as a function of (a) the concentration of Cu and (b) the 

true strain rate. 

The yield stress increases with an increasing amount of Cu, whereas no clear trend is observed 

as a function of the strain rate, as shown in Figure 11. 

  

(a) (b) 

Figure 11. Yield stress as a function of (a) the concentration of Cu and (b) the true strain 

rate. 
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6 Simulation  

In the following subchapters, the simulations are summarized. All results are thoroughly 

discussed in section 9. Please note that a few parts of this chapter have been taken from the 

author’s journal publications [75,95,97]. 

6.1 Physical-constitutive computational framework 

In this chapter, the models presented are verified by creep relations from literature, 

microstructure analyses and mechanical tests.  

All simulation input parameters of the stress-strain relations of the Harper–Dorn creep (HD), 

the power law creep (PL) and the power law breakdown (PLB) regime at higher stresses are 

listed in [75], where additional simulations are published and interpreted by the author. 

Exemplary stress strain relations in Figure 12 illustrate a linear relation in a double-logarithmic 

plot for each creep regime, until the power law breakdown is reached at high stresses. Each 

line represents a specific deformation mechanism, whereas the bold red line, which is labeled 

‘DYN’, is the total stress response on an applied strain rate according to Equation (60). The 

initial grain size is assumed to be 5 μm and the temperatures vary between 100 °C to 500 °C. 

Figure 12 indicates that the lowest resulting stress at a constant strain rate is decisive for the 

deformation mechanism. The slopes of the creep regimes are determined by the exponent 𝑛𝑖  

in Equation (57), until the PLB becomes dominant. For all simulated temperatures, Coble creep 

is the dominant mechanism at small stresses and strain rates. At 100 °C, 200 °C and 300 °C, 

grain boundary diffusion-controlled GBS is dominant at intermediate stress values, and lattice 

diffusion-controlled GBS takes over at 400 °C and 500 °C. Therefore, GBS separates the 

diffusional flow and the power law creep range, which is in good agreement with literature 

[101]. At high stresses, dislocation glide (at 100 °C) or high temperature creep (T> 100 °C) takes 

over. The exponent 𝑛c in Equation (60) defines how distinct the transition of the deformation 

mechanisms is – the higher the exponent, the closer is the resulting stress, 𝜎ges, to the 

prevailing mechanism. The mechanical threshold is treated as a constant since no 

precipitation processes occur in this setup. 
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(a) (b) 

    
(c) (d) 

  

 

(e)  

Figure 12. Dislocation glide (G), LT creep (LT), HT creep (HT), Nabarro–Herring creep (NH), 

Coble creep (C), Harper–Dorn creep (HD), and 𝐷𝑔𝑏- and 𝐷𝑙-controlled GBS (GBS_GB and 

GBS_L) at different constant strain rates at (a) 100 °C; (b) 200 °C; (c) 300 °C; (d) 400 °C and (e) 

500 °C. The resulting stress, 𝜎𝑔𝑒𝑠, of Equation (60) is displayed as bold line (DYN). Reproduced 

from [75]. 
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6.1.1 Stress relaxation  

Besides calculating stresses at an applied constant strain rate, the framework allows to 

calculate time-dependent stress relaxation. The stress strain relations are then used in an 

inverse methodology as derived in [75]. 

To validate this framework, experimental relaxation tests are used from Falkinger and Simon 

[102]. In their work, cylindrical specimens of an AlMg4.5Mn alloy were first compressed with 

a constant strain rate of 0.01 (1/s) at different temperatures (350 °C, 400 °C, 450 °C, 500 °C) 

and then immediately stress relaxed, as shown in Figure 13 (a). Figure 13 (b) shows the time-

dependent reduction of the strain rate, starting from 0.01 (1/s). Lower strain rates at higher 

temperatures are based on the lower initial stress level at the start of the relaxation step. 

Figure 13 (c) and Figure 13 (d) show the stress relaxation of the HT creep (HT), the LT creep 

(LT), the Coble creep, lattice diffusion controlled GBS as well as grain boundary diffusion-

controlled GBS at 350 °C and 500 °C. ”DYN” represents the total thermal stress contribution, 

𝜎ges. The athermal stress contribution can be neglected at high temperatures. The calibration 

settings are summarized in [75]. At the start of stress relaxation, HT creep is the dominant 

mechanism, whereas lattice diffusion-controlled GBS takes over after the strain rate rapidly 

decreases. At very low strain rates, Coble creep takes over at 500 °C. 
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(a) (b) 

  
(c) (d) 

Figure 13. (a) Relaxation tests of an AlMg4.5Mn aluminium alloy at different temperatures. 

The solid lines are the simulations, whereas the symbols indicate the experimental results 

from [102]; (b) logarithmic strain rate reduction; logarithmic stress calculations of HT creep 

(HT), LT creep (LT), Coble creep, 𝐷𝑔𝑏- and 𝐷𝑙-controlled GBS and the total thermal stress 

contribution (DYN) (c) at 350 °C and (d) at 500 °C.  

6.1.2 Deformation maps 

This framework allows the construction of deformation maps, as shown exemplarily in Figure 

14 for a grain size of (a) 5 µm and (b) 50 µm. Although these figures are generated without 

explicit calibration, a qualitative analysis is valid. Each number corresponds to a specific 

deformation mechanism, while the bold black line indicates the transitions between them.  
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(a) (b)  

Figure 14. Exemplary deformation maps for pure Al. Normalized stress [-] for different 

temperatures and strain rates for (a) 5 µm and (b) 50 µm. The black, bold lines indicate 

transitions between the deformation regimes. The numbers indicate the dominant 

deformation mechanisms: dislocation glide (1); LT creep (2); HT creep (3); Coble creep (4); 

𝐷𝑔𝑏-controlled GBS (5) and 𝐷𝑙-controlled GBS (6).  

A detailed discussion of these deformation maps is reported in [75]. 

6.2 Simple MicroStructure Evolution (sMSE) 

The simple MicroStructure Evolution (sMSE) model has been developed to couple rather 

complex microstructure evolution models in a condensed form with FE-simulations. Although 

these models are strongly simplified, the following subchapters highlight that the simulations 

agree well with the experimental results for both, the evolution of precipitates and the 

mechanical properties. 

6.2.1 Precipitation evolution  

The analysis of the nucleation and growth kinetics of precipitates play a crucial role in 

evaluating the microstructure evolution of 6xxx series alloys. Experimental tests were carried 

out to calibrate the sMSE framework on the one hand, and to test the reliability of the model 

on the other hand. The heat treatment of the specimens is shown in Figure 15 (a), where the 

starting point of the annealing step is illustrated by the dotted, vertical lines in Figure 15 (a-

d). The symbols indicate the experimental results of the number density (Figure 15b), the 

length (Figure 15c) and the phase fraction of the precipitates (Figure 15d), whereas the 

number density N is calculated from [98]. While the experimentally evaluated number density 
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starts to increase after two hours, an almost constant precipitation microstructure 

immediately appears in the sMSE simulation, when the annealing temperature is reached at 

180 °C. To compare the radius of the spherical precipitation of the sMSE model to the 

measured length of the needle-shaped 𝛽′′, the following conversion is used 

𝑙 =  √
16

3
𝑟3ℎ2

3
, (62) 

where h is the shape parameter [95]. Although simplified precipitation kinetic models are used 

in the sMSE framework, the simulated phase fractions and the lengths of the precipitates are 

in good agreement with the measured values, as shown in Figure 15 (c) and Figure 15 (d). All 

simulations have been carried out with one set of parameters, as described in [95]. 

  
(a) (b) 

  
(c) (d) 

Figure 15. (a) The applied heat treatment; (b) number density; (c) length and (d) phase 

fraction. Solid lines represent simulation results, while symbols indicate experimental results.  
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6.2.2 Deformation tests 

As the motivation for developing the sMSE framework was to calculate internal stresses using 

the FEM mesh, an accurate simulation of the yield strength is required. It should be highlighted 

here that even with a condensed form of the strengthening mechanisms within the sMSE 

framework, a very good agreement between the simulations and the experiments can be 

achieved. This applies for the athermal stress contribution, as well as for the thermal stress 

contribution, which determines the yield strength. A comparison of the experimental results 

of the yield stress and the results of the simulation for strain rates of 0.1 s-1 and 1 s-1 and six 

different temperatures is visualized in Figure 16. 

 

Figure 16. Comparison of simulated and experimentally obtained flow stresses at strain of  

0.1 s-1 and 1 s-1 and six different temperatures. 

6.3 Impact of solutes on plasticity 

The calibration parameters for the strengthening models are listed in Table 5, for pure Al as 

well as the Al-X (X = Mn, Cu, Zn) alloys. The input parameters used for simulating the thermal 

stress contribution are marked with ‘Th.’, whereas the input parameters for the athermal 

stress contribution are marked with ‘Ath.’. Although not all parameters are defined here, but 

in [97], this table illustrates that the respective parameters for the thermal stress contribution 

are all constants, since the strain rate and concentration dependence are already taken into 

account by the physically-based models themselves.  
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Table 5. Input parameters for the strengthening models as described in [97]. The input 
parameters used for simulating the thermal stress contribution are marked with ‘Th.’, 
whereas the input parameters for the athermal stress contribution are marked with ‘Ath.’. 

 Pure Al Mn Cu Zn 

𝜎basic 

Th. 

18 MPa 

𝑘1 0.1  

𝑘2 0 0.55 0.8 0.3 

n 1/3 

𝑛ss 1.8 

𝜀m 0 0.042 0.0194 0.0038 

𝐴m 

Ath. 

-0.22∙ ln(𝜀̇) + 33.75 

𝛽ss 0 202.17∙ 𝑐1.80 2.62∙ 𝜀̇−0.064𝑐 0.0046∙ 𝑐0.11 

𝛽w 750 

𝛽G 0.08 

𝐴w -0.07∙ ln(𝜀̇) + 0.68 

𝐴im -(1.3·10-4)∙ ln(𝜀̇) + 0.85 

𝐵m -0.564∙ ln(𝜀̇) + 8.94 𝐵m,Al 𝐵m,Al-27.2∙ 𝜀̇−0.14𝑐0.52 𝐵m,Al-0.78∙ 𝜀̇−0.3 ∙ 𝑐0.24 

𝐵im 0.03∙ ln(𝜀̇) + 0.9 𝐵im,Al 𝐵im,Al 𝐵im,Al 

𝐶m 0.2 

𝐶im 0.2 

𝐶w 0.2 

6.3.1 Dislocation density evolution  

For calibrating the dislocation density evolution, the so-called Kocks-Mecking (KM) plot, which 

links the strain hardening rate with the stress, gives a good indication of the dislocation 

recovery behavior. Stronger dynamic recovery effects typically cause a steeper slope of the 

KM-plot and, therefore, affect the parameter 𝐵m in Table 5. The higher the Cu concentration 

for instance, the lower is the dynamic recovery effect and 𝐵m is reduced. In contrast, similar 

slopes of Figure 17 suggest similar recovery conditions independent of the Mn concentrations, 

although they start from different 𝜃0 values.  
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Figure 17. Kocks-Mecking plot of various binary Al-Mn alloys at a strain rate of 0.1 s-1. Solid 

lines represent the simulations while symbols indicate the experimental results.  

The parameters 𝐶m, 𝐶im and 𝐶w take climbing of mobile, immobile and wall dislocations into 

account and can be treated as constant for the deformation tests at room temperature. It 

should be noted that this approach does not claim to be a comprehensive representation of 

all occurring physical mechanisms, but it represents a consistent way to describe the 

dislocation density evolution and successfully simulate a variety of flow curves with a single 

set of parameters. 

Figure 18 shows the calculated evolution of the mobile dislocation density, 𝜌m, the wall 

dislocation density, 𝜌w, the immobile dislocation density, 𝜌im and a weighted sum, 𝜌tot, during 

deformation at RT with a true strain rate of 0.001 s-1 for (a) pure Al and (b) binary Al-Cu  

(1.6 wt%). The simulated dislocation density 𝜌tot agrees reasonably with the obtained 

dislocation densities from [103], which are also included in Figure 18 (a). In the early stages of 

deformation, the total dislocation density is mainly controlled by the generation of mobile 

dislocations. With increasing mobile dislocation density, the transformation into locks and 

dipoles gains relevance and, in addition to the mobile dislocation annihilation process, leads 

to a saturation of the mobile dislocation density. Only the formation and the annihilation of 

the mobile dislocations are directly affected by the alloying elements, as defined by 𝛽ss and 

𝐵m in Table 5. With an increasing amount of Cu, more mobile dislocations are generated, 

leading to a higher saturation level, as demonstrated in Figure 18 (b). Since immobile and wall 
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dislocations arise from mobile dislocations, these dislocation densities are indirectly 

concentration-dependent as well.  

  

(a) (b) 

Figure 18. Calculated dislocation density evolution at RT and a strain rate of 0.001 s-1 for (a) 

pure Al and (b) Al-Cu (1.6 wt%). Experimental points from [104]. 

It should be mentioned that no direct experimental evidence has been provided to confirm 

the development of the different dislocation structures as shown in Figure 18. However, the 

evolution of the total dislocation density 𝜌tot, which is linked to the athermal stress 

contribution by the Taylor equation, provides valuable information of the material’s work 

hardening behavior.  

6.3.2 Flow curve simulations 

The input parameters for all flow curve simulations are listed in [97]. The solid lines in Figure 

19Figure 19. Flow curves of binary Al-Cu at strain rates of (a) 0.001, (b) 1 s-1. represent the 

simulations and the symbols indicate the experimental results. The plastic deformation 

behavior is given by the sum of the thermal and athermal stress contribution, as discussed in 

section 3. The thermal part determines the initial yield stress of each flow curve and is 

calculated by the superposition of the basic stress and solid solution strengthening. Due to 

thermal activation, the measured yield stress can be lower than the basic stress, as expressed 

in Equation (10). Especially for high strain rates (𝜑̇ = 0.1 and 𝜑̇ = 1 s-1) and high concentrations, 

a trend of increasing hardening rate 𝜃 can be observed in the experimental data. 
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Figure 19 shows the flow curves of the binary Al-Cu alloys for strain rates of 0.001 s-1 and  

1 s-1. The concentration-dependency of the work hardening rate is determined by the 

influence of the dissolved atoms on the internal and wall dislocation density. An increasing Cu 

amount lowers the effective mean free travel distance of mobile dislocations and decreases 

𝐵m, as indicated by the calibrations in Table 5. Consequently, more mobile dislocations are 

formed, and less annihilation occurs at the same time, leading to a higher athermal stress 

contribution. The model calibration of 𝛽ss and 𝐴m suggest a negative strain rate sensitivity of 

the initial strengthening rate 𝜃0, as observed in the experiments. A slightly increasing dynamic 

recovery effect with increasing strain rate is given by the strain rate dependency of 𝐵m. This 

can be observed if Figure 19 (a) and (b) are compared at 1.56 wt% Cu. Although, the flow curve 

has a higher initial yield stress at a strain rate of 1 s-1, the evaluated stress at a strain of 0.3 is 

less compared to the curve at a strain rate of 0.001 s-1.  

  

(a) (b) 

Figure 19. Flow curves of binary Al-Cu at strain rates of (a) 0.001, (b) 1 s-1. 
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7 Summary  

The plastic deformation behavior of various Al alloys is simulated in a wide temperature and 

strain rate range. Therefore, physically based models, which include thermal and athermal 

stress contributions, are combined with empirical creep relations. For all simulations, the 

effective diffusion coefficient, which is influenced by pipe diffusion enhancement, excess 

vacancies or trapping effects, is used. This new framework is brought into a condensed form 

so that it can be integrated in standard FEA tools, such as Abaqus, and is called ‘simple 

MicroStructure Evolution’ (sMSE) model in this work. Despite all simplifications, main 

strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, 

or work hardening are included, and its validity is demonstrated. The sMSE framework is 

characterized by a low calculation time, which allows to simulate residual stresses of complex 

components, such as cylinder heads. Because of the consideration of the microstructure 

evolution across a broad range of temperatures and strain rates, this framework is suitable 

for various industrial applications, including hot forming processes and strain relaxation during 

stress relieve annealing. Furthermore, exemplary deformation maps for Al are calculated in 

this work to provide an overview of the dominant deformation mechanism at specific 

temperatures and applied shear stresses.  

Another focus of this work is the investigation of the impact of solutes on the mechanical 

properties. Therefore, a comprehensive experimental study of the influence of dissolved 

alloying elements on the yield strength as well as the work hardening behavior is given for 

various binary Al-Mn, Al-Zn and Al-Cu alloys. For the simulation of the yield stress, a 

mechanical threshold concept is used, whereas the work hardening simulation is based on an 

advanced 3-Internal-Variables-Model (3IVM). The evolution of mobile, immobile and wall 

dislocations is calculated, where a suitable evaluation of the experiments can provide 

information about the materials hardening and recovery behavior, which is the basis of a valid 

model calibration. 
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Abstract: An integrated framework for deformation modeling has been developed, which 

combines a physical state parameter-based formulation for microstructure evolution during 

plastic deformation processes with constitutive creep models of polycrystalline materials. 

The implementations of power law, Coble, Nabarro–Herring and Harper–Dorn creep and 

grain boundary sliding are described and their contributions to the entire stress response at 

a virtual applied strain rate are discussed. The present framework simultaneously allows 

calculating the plastic deformation under prescribed strain rate or constant stress, as well as 

stress relaxation after preceding stress or strain loading. The framework is successfully 

applied for the construction of deformation mechanism maps. 

Keywords: creep; dislocations; microstructure; relaxation 

 

1. Introduction 

The physical understanding of creep mechanisms has been of significant academic interest 

within the last decades. Especially, the creep response of pure Al has been investigated over 

a wide temperature and stress range. The physical process of plastic flow is still the subject of 

controversial discussions for some deformation regimes [1–4], but semi-empirical equations 
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in literature satisfactorily reproduce the experimentally obtained stress-strain relations. The 

power law regime is associated with vacancy-assisted climb of dislocations, while diffusional 

flow of atoms is attributed to Coble creep [5] and Nabarro–Herring creep [6]. At low stresses 

and large grain sizes, Harper–Dorn creep dominates [7–11]. In fine grain structures, grain 

boundary sliding can control the deformation process [12–16].  

In the present work, characteristic creep relations are brought into a homogeneous form and 

used to calculate the stress response of polycrystalline materials to a constant applied strain 

rate or the strain rate resulting from an applied external stress load, respectively. Since this 

framework is based on fundamental plastic deformation mechanisms, thermomechanical 

simulations are possible for a broad spectrum of metallic materials. Therefore, only 

characteristic material parameters, which are described in the following discussion, need to 

be calibrated for each material. Within this work, the model is exemplarily applied to Al. An 

inverse summation rule of the individual stress contributions ensures that the dominant 

deformation mechanism mainly defines the overall thermally activated stress response. 

Microstructural changes during the deformation process are represented by the average 

dislocation density evolution. The utilized Kocks–Mecking approach considers dislocation 

generation as well as dynamic and static recovery for dislocation annihilation. The 

combination of thermally activated stress contributions and the athermal stress contribution 

from dislocation hardening allows simulating the stress-strain relations over a wide range of 

temperatures and strain rates. This framework allows for modeling of plastic deformation by 

dislocation glide as well as of primary creep and secondary creep. The strain rate acceleration 

and damage accumulation due to cavitation, cracks or both is not considered, which is typical 

for tertiary creep. Consequently, this framework is valid for experiments, where creep damage 

is effectively suppressed, or for materials which show a pronounced secondary creep stage. 

As an additional feature, stress relaxation tests from literature are successfully simulated 

within this work to compare the simulation framework with experimental data.  

Although not elaborated in the present work, the framework is fully capable of considering 

microstructural features, such as fine grain hardening, dislocation locking by Cottrell 

atmospheres or precipitates. Application of the latter two mechanisms has been 

demonstrated recently by Soliman et al. [17]. These features provide further barriers for 

ongoing dislocation glide, leading to a higher stress response to an applied strain rate. 
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Diffusion creep, such as Coble creep and Nabarro–Herring creep, are not affected by those 

microstructural barriers.  

2. The model 

The following two subchapters describe the implementation of both aspects of this 

framework, which are the constitutive creep relations on the one hand, and physically-based 

microstructure evolution on the other hand. A combination of the prevailing stress 

contribution is presented in chapter 3, Results and Discussion. 

2.1. Constitutive Modeling of Creep  

The deformation characteristics of crystalline materials are mainly controlled by the applied 

strain rate / external stress loading as well as temperature. Dependent on the particular 

combination of these parameters, the deformation process is made possible by different 

physical mechanisms. Generally, at high temperatures, the deformation characteristics show 

considerable dependency on the applied stress in combination with a low amount of strain 

hardening. At high temperatures, various creep mechanisms can be operative simultaneously, 

whereas mostly dislocation glide facilitates plastic deformation at low temperature, high 

stress or both. Interactions with obstacles, such as grain boundaries, solute atoms, 

precipitates or other dislocations cause a barrier for an ongoing movement of the mobile 

dislocations that carry the plastic deformation process. Consequently, the various obstacle 

strengths determine the rate of dislocation motion and, thus, the strain rate, 𝜀̇, which is 

typically represented by an Arrhenius equation [18–23] as 

𝜀̇ =  𝜀0̇· exp (
−∆𝐺

𝑘B·𝑇
). (1) 

𝜀0̇ is a constant [24], 𝑘B the Boltzmann constant, T is the temperature and ∆𝐺 is the shear 

stress-dependent free activation enthalpy, which can be expressed by [20] 

∆𝐺(𝜎s) =  ∆𝐹· [1 − (
𝜎s

𝜏̂
)
𝑝

]
𝑞

. (2) 

∆𝐹 is the is the total free energy to overcome the obstacle barrier, 𝜎s the applied shear stress, 

𝜏̂ the mechanical threshold, which represents the activation energy barrier in the absence of 

thermal activation, and p and q define the shape of the energy barrier. In the following, a box 

shaped barrier is assumed by p = q = 1. A combination of Equations (1) and (2) leads to 
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𝜀̇ =  𝜀0̇·exp [−
∆𝐹

𝑘B·𝑇
· (1 −

𝜎s

𝜏̂
)]. (3) 

At lower stresses, higher temperatures or both, (T ≥ 0.3·𝑇m), diffusion-controlled 

deformation regimes, instead of dislocation glide, become dominant. 𝑇m is the melting 

temperature. Although the following phenomenological equation does not describe the creep 

process on a physical basis, it is often successfully applied in literature [20,25,26] and it is also 

included within this framework as 

𝜀̇ =  
𝐴·𝐷tr·𝐺·𝑏

𝑘B·𝑇
· (
𝜎s

𝐺
)
𝑛

. (4) 

𝐷tr is the tracer diffusion coefficient of the matrix-forming element, 𝐺 the shear modulus and 

b the Burgers vector. Brown and Ashby [26] empirically correlated the coefficients, A and n, 

based on detailed evaluations of creep data of bcc, fcc, hpc metals (including their alloys), 

dispersion hardened materials, cubic elements, alkali halides and oxides. Missing explanations 

for the observed values of n and a huge variety in A of many orders of magnitude motivated 

Frost and Ashby to include dislocation core diffusion additionally to the bulk matrix diffusion 

coefficient [20]. Consequently, two rate equations are obtained: At low temperatures or high 

stresses, dislocation core diffusion is dominant, while lattice diffusion is the dominant 

mechanism at high temperatures and low stresses. In the following, both mechanisms, which 

are termed as low-temperature creep, LT creep, and high-temperature creep, HT creep, are 

dealt with separately. The weighted combination of creep mechanisms is discussed in section 

3. The strain rate, 𝜀ḢT, for HT creep can be expressed as 

𝜀ḢT = 
 𝐴HT·𝐺·𝑏·𝐷eff

𝑘B·𝑇
· (
𝜎S

𝐺
)
𝑛HT

. (5) 

𝑛HT is a coefficient and 𝐴HT is microstructure-dependent within the present framework (see 

section 3). 𝐷eff is the effective diffusion coefficient that includes trapping of vacancies at 

solute atoms [27], excess vacancies [28] and dislocation pipe diffusion [29,30] as inherent 

diffusion mechanisms. The migration of vacancies predominantly determines diffusion in 

polycrystalline solids. Here, the creation and annihilation of vacancies at grain boundaries, 

dislocation jogs or Frank loops are considered within the FSAK model [28]. Additionally, an 

increasing dislocation density during deformation causes a higher effective diffusion 

coefficient based on a higher pipe diffusion contribution. The strain rate 𝜀L̇T for the LT creep 

contribution is calculated as 
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𝜀L̇T = 
 𝐴LT·𝐺·𝑏·𝐷c

𝑘B·𝑇
· (
𝜎S

𝐺
)
𝑛LT

. (6) 

𝑛LT is a constant, 𝐴LT is a state-dependent parameter and 𝐷c is the dislocation core diffusion 

coefficient, which, for Al-based alloys, is given by a correlation with the tracer diffusion 

coefficient 𝐷tr [31]: 

𝐷c = 0.11· exp (
𝑄tr−𝑄c

𝑅·𝑇
) ·𝐷tr. (7) 

𝑄tr and 𝑄c are the activation energies for bulk diffusion and dislocation core diffusion. R is the 

universal gas constant. Above a certain stress of approximately 10–3𝐺, the stress-strain 

relation typically changes, which is referred to as power law breakdown (PLB). This 

phenomenon is intensively discussed in literature [32,33]. Within the present framework, the 

following empirical equation is utilized 

𝜀𝑖̇ = 
 𝐴𝑖·𝐺·𝑏·𝐷𝑖

𝑘B·𝑇
· [sinh (𝛼′·

𝜎S

𝐺
)]
𝑛𝑖

. (8) 

𝜀𝑖̇, A𝑖, Di and 𝑛𝑖  refer to the prevailing deformation mechanisms and α′ specifies the stress 

level at which the power law break down starts.  

At low applied stresses (𝜎/𝐺 < 10−5) and small grain sizes, diffusional flow determines the 

deformation process. In contrast to power law creep, strain is caused by the diffusion of 

vacancies, rather than dislocation mechanisms. This deformation mode has first been 

described by Nabarro and Herring [6]. The corresponding creep rate 𝜀ṄH, as implemented 

within the present framework, is given by [20] 

𝜀ṄH  =  
42·𝑏3·𝐷𝑒ff

𝑘B·𝑇·𝑑2
·𝜎S, (9) 

where d is the grain size. Since lattice diffusion is the predominate mechanism, the effective 

matrix diffusion coefficient, 𝐷eff, is utilized.  

Vacancy diffusion along grain boundaries instead of lattice diffusion leads to Coble creep [5]. 

The strain rate, 𝜀Ċ, for Coble creep is formulated as 

𝜀Ċ = 
42·𝑏3·𝜋·𝛿·𝐷gb

𝑘B·𝑇·𝑑3
·𝜎S. (10) 

𝛿 is the effective boundary thickness and 𝐷gb is the grain boundary diffusion coefficient, 

which, for Al-based alloys is given [31] as 
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𝐷gb = 1.4· exp (
𝑄tr−𝑄gb

𝑅·𝑇
) ·𝐷tr. (11) 

𝑄gb is the activation energy for grain boundary diffusion. At low stresses and large grain sizes, 

another deformation mechanism occurs, which was first reported by Harper et al. in 1957 [7]. 

In the following fifty years, the Harper–Dorn regime has been identified in many studies  

[7–11]. A phenomenological relation between the applied stress, 𝜎s, and the creep rate, 𝜀ḢD, 

reads  

𝜀ḢD = 
𝐴HD·𝐷eff·𝐺·𝑏

𝑘B·𝑇
· (
𝜎s

𝐺
), (12) 

where 𝐴HD is a coefficient. Equal to the Nabarro–Herring creep, 𝜀ḢD increases linearly with 

the applied stress, 𝜎s, (Newtonian nature) and the activation energy is of the magnitude of 

self-diffusion. However, measured steady-state creep rates of Harper–Dorn creep are often 

higher by a factor of approximately 1400. Low initial dislocation densities, as well as high purity 

of the material, favor Harper–Dorn creep, as reported by [4,11]. The low steady-state 

dislocation density typical for this deformation mechanism remains constant and is 

independent of 𝜎 [8]. A possible explanation is given by the Ardell–Przystupa–Lee (APL) 

dislocation network theory [1]. The mechanism of the deformation process during Harper–

Dorn creep has been discussed intensively in literature [4,7–10] and its analysis is beyond the 

of scope of this work. Another deformation mechanism, which can control the plastic behavior 

of fine-grained polycrystalline materials, is based on grain boundary sliding (GBS). Many 

observations confirm an inverse dependency of the strain rate, 𝜀ĠBS, on squared or cubed 

grain size [12–16]. If the activation energy is associated with grain boundary diffusion, 𝐷gb, 

the creep rate is [12]:  

𝜀ĠBS−GB = 
𝐴GBS−GB·𝐷gb·𝐺·𝑏4

𝑘B·𝑇·𝑑3
· (
𝜎

𝐺
)
2

, (13) 

where the coefficient 𝐴GBS−GB = 2 · 10
5. If effective lattice diffusion 𝐷eff is the rate 

controlling mechanism, the following equation is utilized [12]: 

𝜀ĠBS−L = 
𝐴GBS−L·𝐷eff·𝐺·𝑏

3

𝑘B·𝑇·𝑑2
· (
𝜎

𝐺
)
2

, (14) 

where the coefficient 𝐴GBS−L = 8 · 106. The impact of grain boundary sliding processes on 

conventional Ashby–Frost [20] and Langdon–Mohamed [34,35] deformation mechanism 

maps are described by Lüthy et al. [12]. It is shown for Ni that 𝐷gb- and 𝐷l-controlled GBS 
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strongly reduces Coble creep and suppresses Nabarro–Herring creep to insignificant 

normalized stresses within the Ashby maps. Although Coble creep and Nabarro–Herring creep 

are overtaken by grain boundary sliding in Al at all temperatures at an applied normalized 

stress of 𝜎/𝐺 =  10−4, these mechanisms are incorporated into the framework to achieve a 

generalized form of all creep mechanisms. Except for the dislocation glide mechanism, all 

thermally activated deformation processes introduced so far are diffusion-controlled, either 

by lattice diffusion, pipe diffusion or grain boundary diffusion. The present models describe 

the activation of dislocation glide, dislocation climb and vacancy diffusion; however, under the 

assumption of a constant microstructure and no accumulation of creep damage, which is the 

condition of steady state creep. In real materials, the dislocation density changes during 

deformation before the steady-state dislocation density is reached. This microstructure 

evolution is characteristic for the transient range of creep and is discussed in the following.  

2.2. Physical Modeling of Microstructure Evolution 

For the simulation of the stress evolution during thermomechanical treatments, the 

knowledge of the current microstructure is mandatory. Therefore, physically based models 

are utilized, which can simulate the evolution of grain sizes [36,37], nucleation and growth of 

precipitates, or the current dislocation density. All these models are already implemented 

within the thermo-kinetic software package MatCalc (http://matcalc.at). To incorporate the 

dislocation strengthening contribution accompanying the transient deformation region, 

following extended one-parameter model of Kocks and Mecking is used to calculate the 

temperature and strain rate dependent dislocation density evolution [24]: 

d𝜌

d𝜀
=  
d𝜌+

d𝜀
+ 
d𝜌−

d𝜀
+
d𝜌𝑠

−

d𝜀
=   

𝑀

𝑏𝐴
√𝜌 − 2𝐵𝑀

𝑑crit
𝑏
𝜌 − 2𝐶𝐷d

𝐺𝑏3

𝜀̇𝑘𝑇
(𝜌2 − 𝜌eq

2 ). 
(15) 

The Taylor factor, M, relates the macroscopically observed flow stress to the critical resolved 

shear stress acting on a slip plane within a polycrystalline material. A and B are material-

specific coefficients and 𝑑crit is the critical annihilation distance between two dislocations 

[24]. C is a constant and 𝜌eq is the equilibrium dislocation density. The generation of 

dislocations 
d𝜌+

d𝜀
 is caused by dislocation storage in the crystal, being inversely proportional to 

the current mean distance between dislocations and the dislocation density, , respectively. 

Annihilation of dislocations occurs by cross slip processes 
d𝜌−

d𝜀
 at low and intermediate 
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temperatures and by vacancy-assisted climb 
d𝜌𝑠

−

d𝜀
 at high temperatures. The latter annihilation 

process represents static recovery, which is marked by the index s. The Taylor equation 

correlates the athermal, plastic stress contribution with the dislocation density 𝜌 [38,39] as 

𝜎p = 𝛼·𝑀·𝑏·𝐺·√𝜌 . (16) 

The MatCalc software package includes models for the growth and shrinkage of subgrains 

during plastic deformation, which are out of scope in the present work. The calculation of the 

average dislocation density for the athermal stress contribution has often been validated [24] 

and possible industrial applications, such as hot rolling processes, which additionally include 

recrystallization, have been demonstrated recently [40]. 

In terms of the possible evolution of the precipitate microstructure, the SFFK model [41–43] 

is utilized as implemented in the MatCalc software package. Within this framework, a 

thermodynamic system out of equilibrium state is described by the Gibbs energy, G, given by 

𝐺 =  ∑𝑁0𝑖·𝜇0𝑖

𝑛

𝑖=1

+∑
4·𝜋·𝜌𝑘

3

3

𝑚

𝑘=1

(𝜆𝑘 +∑𝑐𝑘𝑖·𝜇𝑘𝑖

𝑛

𝑖=1

) +∑4·𝜋·𝜌𝑘
2·𝛾𝑘.

𝑚

𝑘=1

 (17) 

The index i represents the component i in the matrix and the index k represents a specific 

precipitate with the radius 𝜌. 𝑁0 is the number of moles, 𝜇0 the chemical potential, c the 

concentration and 𝜆 accounts for the elastic energy, which is associated with the elastic stress 

field around the precipitate. 𝛾 is the interface free energy density.  

The steady-state nucleation rate, 𝐽s, which is defined as the number of formed nuclei per unit 

volume and unit time, is given by [44,45]  

𝐽s = 𝑍·𝛽∗·𝑁C·exp (
−∆𝐺∗

𝑘B·𝑇
), (18) 

where 𝑍 is the Zeldovich factor, 𝛽∗ the atomic attachment rate, 𝑁C the number of available 

nucleation sites and ∆𝐺∗ is the critical nucleation energy. Equations (17) and (18) provide the 

basis for rather complex precipitation evolution models, which cause strengthening 

contributions by shearing- and non-shearing mechanisms. A detailed discussion of 

precipitation strengthening is beyond the scope of this work and the authors refer to Ahmadi 

et al. [46]. Solid solution strengthening models as well as the cross core diffusion effect, which 

can lead to negative strain-rate sensitivity, are implemented in MatCalc and successfully 

applied, e.g., in Kreyca and Kozeschnik [24]. These thermally activated stress contributions are 
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linked to the present framework by the mechanical threshold 𝜏̂ (Equation (3)). In the following, 

𝜏̂ is assumed to remain constant for the benefit of clear discussion. 

3. Results and Discussion 

In classical creep tests, a constant stress is applied and the resulting creep rate is measured. 

In an inverse methodology, the creep relations described in the previous section can be 

utilized to calculate stresses at an applied constant true strain rate. The stress response 𝜎G of 

pure dislocation glide is calculated by Equation (3) and leads to  

𝜎G = 𝜏̂·(1 − [
𝑘B·𝑇

∆𝐹
] ·ln (

𝜀̇

𝜀̇0
)). (19) 

Since Equation (19) delivers negative stress values above a certain critical temperature, 𝑇crit, 

the following alternative equation is widely used in literature [24]:  

𝜎G = 𝜏̂· exp (
−𝑘B·𝑇

∆𝐹
·ln (

𝜀̇0

𝜀̇
)). (20) 

The following equations summarize the present implementation of the LT creep, the HT creep 

and the Harper–Dorn creep in the integrated framework of deformation modeling. The indices 

display the different associated pre-factors, A, the diffusion coefficients, D, as well as the 

exponents, n, with  

𝜎𝑖 = (
𝑘B·𝑇·𝜀̇

𝐴𝑖·𝐷𝑖·𝐺·𝑏
)

1

𝑛𝑖 ·𝐺. (21) 

The power law breakdown regime is implemented with 

𝜎𝑖 = sinh
−1 (

𝑘B·𝑇·𝜀̇

𝐴𝑖·𝐷𝑖·𝐺·𝑏
)

1

𝑛𝑖 ·
𝐺

𝛼′
. (22) 

The stress response of Nabarro–Herring creep, 𝜎NH, and Coble creep, 𝜎C, are calculated by 

Equations (9) and (10) and 𝐷gb- and 𝐷l-controlled GBS are calculated by Equations (13) and 

(14). Kreyca [47] has correlated the thermally activated dynamic yield stress contribution at 

high temperatures with the HT power law creep relation, Equation (5), leading to the relation 

𝐴HT ∝
∆𝐹

𝐷eff·𝜏̂
·exp (

−∆𝐹

𝑅·𝑇
),  (23) 

where ∆F is the activation energy for lattice diffusion and 𝐷eff is the effective diffusion 

coefficient. Although it is not very common to connect the mechanical threshold concept 𝜏̂ 

with the creep behavior, this approach takes the influence of microstructure features, such as 
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precipitates on the creep rate, into account. It should be emphasized that the particular 

microstructural state also influences the diffusion coefficient, Deff, of Equation (23) by 

trapping effects, pipe diffusion or by excess vacancies. For correlating 𝐴LT  of Equation (6) with 

the mechanical threshold concept, the core diffusion z as well as the activation energy for pipe 

diffusion are utilized. This concept is used for calibrating 𝐴LT and 𝐴HT in the following. Figure 

1 shows the Harper–Dorn creep (HD) and power law creep (PL) regime, including the power 

law breakdown (PLB) at higher stresses. The symbols indicate the normalized strain rate, 

𝜀̇·𝑘B·𝑇/𝐷eff·𝐺·𝑏, as a function of the normalized stress 𝜎/𝐺 from Straub and Blum [48] for 

pure 99.999 Al. 

 

Figure 1. Harper–Dorn creep (HD), power law creep (PL), including power law 

breakdown (PLB). Symbols indicate experimental results for pure 99.999 Al from [48]. 

The normalized strain rate is defined by 𝜀̇·𝑘B·𝑇/𝐷eff·𝐺·𝑏. 

All simulation input parameters are listed in Table 1, but instead of α' = 1000, which is a typical 

value in literature [20], better agreement with experimental results are achieved with α' = 

1300 in this case. In determination of the overall creep behavior, the assumption is made that 

the creep mechanism with the lowest resulting stress and, therefore, lowest deformation 

resistance, is dominant. The following summation rule is utilized 

(
1

𝜎ges
)
𝑛c

 = (
1

𝜎G
)
𝑛c
+ (

1

𝜎LT
)
𝑛c
+ (

1

𝜎HT
)
𝑛c
+ (

1

𝜎NH
)
𝑛c
+ (

1

𝜎C
)
𝑛c
+ (

1

𝜎GBS−GB
)
𝑛c
+

(
1

𝜎GBS−L
)
𝑛c
+ (

1

𝜎HD
)
𝑛c

, 

(24) 

where 𝑛c is the coupling coefficient. The total stress contribution at a certain temperature and 

strain rate is the sum of the athermal stress contribution, 𝜎p, of Equation (16) and 𝜎ges of 

Equation (24). Except for the dislocation glide mechanism, each creep regime is characterized 



61 

 

by a linear relation in a double-logarithmic plot until the power law breakdown is reached at 

high stresses. Exemplary stress-strain rate relations are illustrated in Figure 2 for all discussed 

deformation regimes at different temperatures from 100 to 500 °C, whereas 𝜎ges of Equation 

(24) is represented by the bold line, labeled ”DYN”. Table 1 lists all simulation input 

parameters.  

Table 1. Parameters to calculate each deformation regime. 

Symbol Name Unit Value Equation Source 

𝐺 Shear modulus MPa 
29,438.4–
15.052T 

13,14,21,2
2 

[49] 

b Burgers Vector m 2.86·10−10 
9,10,13,14

, 21,22 
[20] 

α Strengthening coefficient - 0.34 16 [39] 

M Taylor factor - 3.06 16 [24] 

∆𝐹 Activation energy J/mol 0.25·𝐺·b3 19 [20] 

𝜀0̇ constant - 1.46·105 19 [24] 

𝛿 
Effective boundary 

thickness 
m 2·10−9 10 (MatCalc) 

d Grain size m 5·10–6 9,10,13,14 This work 

𝐴LT LT constant - 5.71·10−13 22 This work 

𝐴HT HT constant - 4.23·10−7 22 This work 

𝐴HD HD constant - 1·10−10 21 [20] 

𝐴GBS−GB 
𝐷GB -controlled GBS 

coefficient 
- 2·105 13 [12] 

𝐴GBS−L 
𝐷l-controlled GBS 

coefficient 
- 8·106 14 [12] 

𝑛c coupling coefficient - 10 24 This work 

α' PLB - 1000 24 [20] 

𝑛LT LT exponent - 6.4 22 [20] 

𝑛HT HT exponent - 4.4 22 [20] 

𝑛HD HD exponent - 1 21 [20] 

𝑄tr 
Activation energy for bulk 

diffusion 
J/mol 127,200 7,11 [31] 

𝑄c 
Activation energy for 

dislocation core diffusion 
J/mol 83,200 7 [31] 

𝑄gb 
Activation energy for grain 

boundary 
J/mol 60,200 11 [31] 

 

The exponent n of the power law mechanism (Equations (5) and (6)) determines the slope of 

the LT creep and the HT creep range, until the PLB becomes dominant. The Nabarro–Herring 

creep, the Coble creep and the Harper–Dorn creep deliver parallel shifted results based on the 

linear relation of stress and strain rate. The slope of the GBS regime is steeper and crosses the 
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Coble creep mechanism at a specific stress value, which depends on the initial grain size, which 

is 5 μm in this case, and the deformation temperature. At 100 °C, 200 °C and 300 °C, grain 

boundary diffusion-controlled GBS is dominant at intermediate stress values, which is finally 

overtaken by dislocation glide (at 100 °C) or high temperature creep (at 200 °C and 300 °C) at 

high stresses. Above 400 °C, 𝐷l-controlled GBS replaces 𝐷gb-controlled GBS as dominant 

deformation mode. Figure 2 illustrates that GBS controls plastic flow in the intermediate stress 

range, separating diffusional flow and power law creep range, in good agreement with 

literature [12]. The transition of these deformation regimes is governed by the exponent 𝑛c in 

Equation (24). The higher the coupling coefficient 𝑛c, the closer is the resulting stress, 𝜎ges, to 

the prevailing mechanism. A value of 𝑛c = 10 is used in the present analysis, which assures 

that the resulting curves are rather close to the strain rates predicted by the dominating 

mechanism and numerical artifacts are minimized. 
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(a) (b) 

    

(c) (d) 

  

 

(e)  

Figure 2. Dislocation glide (G), LT creep (LT), HT creep (HT), Nabarro–Herring creep 

(NH), Coble creep (C), Harper–Dorn creep (HD), and 𝐷gb- and 𝐷l-controlled GBS 

(GBS_GB and GBS_L) at different constant strain rates at (a) 100 °C; (b) 200 °C; (c) 300 

°C; (d) 400 °C and (e) 500 °C. The resulting stress, 𝜎ges, of Equation (21) is displayed 

as bold line (DYN). 
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The mechanical threshold, 𝜏̂, which represents the activation energy barrier in the absence of 

thermal activation, needs to be defined to calculate the dislocation glide contribution, 

especially at low temperatures (see Equation (20)). Since 𝜏̂ comprises solid solution hardening, 

precipitation hardening and cross core diffusion hardening (see section 2.2, Physical modeling 

of microstructure evolution), the evolution of the microstructure during the deformation 

processes is inherently included in the integrated model. In the present analysis, no 

precipitation processes occur in this setup, leading to a constant mechanical threshold 𝜏̂ = 145 

MPa and consequently, to constants 𝐴LT and 𝐴HT.  

The present framework allows calculating both, stresses during constant strain rates as well 

as time-dependent stress relaxation. The stress reduction, 𝜎̇, during relaxation is assumed to 

occur along the elastic region with 

𝜎̇ = 𝐸·𝜀̇, (25) 

where E is the Youngs modulus. Hence, the stress reduction, 𝜎̇, is defined by the current 

dynamic strain rate, 𝜀̇. The new stress value, 𝜎𝑡+∆𝑡, in each iteration step, Δt, of the numerical 

integration procedure is given by 

𝜎𝑡+∆𝑡 = 𝜎𝑡 − 𝜎̇·∆𝑡. (26) 

For a given materials’ microstructure, each stress value corresponds to a unique strain rate, 

which determines the next stress relaxation step in Equation (25). In this setup, simulations of 

relaxation tests are carried out. Figure 3a shows relaxation curves of an AlMg4.5Mn alloy, after 

compressing cylindrical specimens with a constant strain rate of 0.01 (1/s) at different 

temperatures (350 °C, 400 °C, 450 °C, 500 °C). The experimental points are adopted from the 

work of Falkinger and Simon [50]. Figure 3b depicts the decreasing strain rate during the 

relaxation process, starting from 0.01 (1/s). The higher the deformation temperature in the 

pre-step, the lower the initial stress level for relaxation is, resulting in lower strain rates. The 

stress reduction of the HT creep (HT), the LT creep (LT), the Coble creep, lattice diffusion 

controlled GBS as well as grain boundary diffusion-controlled GBS are illustrated for 350 °C in 

Figure 3c and 500 °C in Figure 3d. According to Equation (24), Nabarro–Herring and Harper–

Dorn creep are negligible in this example setup, due to their exceeding stress contributions. 

The calibration settings are summarized in Table 1, but AHT = 2.15 · 10
−11 and ALT =  5.71 ·

10−17 for this specific alloy. Usually, AHT and ALT are calibrated by conventional creep tests 

instead of relaxation tests. The aim of Figure 3 is to illustrate the possibility of calculating stress 



65 

 

relaxations within this framework for a specific set of parameters. When the stress relaxation 

starts after compressing the cylinder, HT creep controls the plastic flow at 350 °C and 500 °C, 

as shown in Figure 3c and Figure 3d at 0 s. As the strain rate rapidly decreases in both cases, 

lattice diffusion-controlled GBS becomes the dominant mechanism. At very low stresses and 

strain rates, Coble creep becomes the dominant mechanism at 500 °C. The total thermal stress 

contribution, 𝜎ges, of Equation (24) is named ”DYN” in Figure 3c and Figure 3d. The athermal 

stress contributions at the high temperatures and small strain rates (Equation (16)) are not 

significant due to a negligible amount of dislocation generation. 

  

(a) (b) 

  

(c) (d) 

Figure 3. (a) Relaxation tests of an AlMg4.5Mn aluminium alloy at different 

temperatures. The solid lines are the simulations, whereas the symbols indicate the 

experimental results from [50]; (b) logarithmic strain rate reduction; logarithmic 

stress calculations of HT creep (HT), LT creep (LT), Coble creep, 𝐷gb- and 𝐷l-controlled 

GBS and the total thermal stress contribution (DYN) (c) at 350 °C and (d) at 500 °C. 
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An additional possible application of this framework is the construction of deformation maps, 

which provide information about the dominant deformation mechanism at specific 

temperatures and applied shear stresses. Figure 4 shows the calculated normalized stresses 

(𝜎/𝐺) for different strain rates and temperatures in dependence of the grain diameter ((a) 

5 µm, (b) 50 µm) for pure Al. Since grain rotation is not considered in the present work, 

application of the framework to sub-micrometer grain sizes might deliver inaccurate results 

(ultra-fine grained materials). The numbers in Figure 4 denote the corresponding deformation 

mechanisms and the black, bold lines indicate the transitions between the different 

deformation regimes.  

  

 

(a) (b)  

Figure 4. Exemplary deformation maps for pure Al. Normalized stress [-] for different 

temperatures and strain rates for (a) 5 µm and (b) 50 µm. The black, bold lines 

indicate transitions between the deformation regimes. The numbers indicate the 

dominant deformation mechanisms: dislocation glide (1); LT creep (2); HT creep (3); 

Coble creep (4); 𝐷gb-controlled GBS (5) and 𝐷l-controlled GBS (6). 

Figure 4 shows representative deformation maps that have been generated without explicit 

calibration and thus they allow only for qualitative and exemplary analysis. In this sense, Figure 

4a illustrates that GBS becomes the deformation-controlling mechanism at small grain sizes 

for a wide temperature range, which is in good agreement with literature [12]. Increasing GBS-

fields are accompanied by shrinking LT creep and HT creep fields within the deformation maps. 

The dislocation density rapidly increases at high strain rates, leading to an increasing pipe 

diffusion coefficient, 𝐷C, and a larger LT creep field (number 2). A detailed description of 

deformation maps and a catalogue of maps for various groups of materials are provided by 
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Frost and Ashby [20]. The effects of GBS on Frost–Ashby deformation maps are discussed in 

[12].  

4. Conclusions 

The implementation of creep mechanisms and their contributions to the stress response to an 

applied strain rate within an integrated framework for deformation modeling is discussed. 

Although, steady state is usually presumed for the secondary creep relations under no creep 

damage condition, athermal dislocation strengthening contribution and the mechanical 

threshold concept are considered. In the present framework, an integration of the influence 

of precipitates on the creep regimes is possible but was beyond the scope of this work. It is 

demonstrated that plastic flow is either governed by dislocation glide, diffusion of either 

vacancies or dislocations or by grain boundary sliding. The effective diffusion coefficient, 

which is influenced by pipe diffusion enhancement, excess vacancies or trapping effects, is 

accounted for. This new framework allows calculating the creep or plastic deformation 

behavior, while applying either a constant stress, stress relaxation after previous deformation 

or constant strain rate loading. Exemplary deformation maps for Al are calculated with the 

present model. Considering the microstructure evolution within a wide range of temperature 

and strain rate makes this framework suitable for many industrial applications, such as hot 

forming processes or strain relaxation during stress relieve annealing.  
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Abstract: A new state parameter-based user-subroutine for finite-element software packages, 

which can be used to simulate microstructure-dependent stress–strain relations, is presented. 

Well-established precipitation kinetics, strain hardening and strengthening models are 

brought into a condensed form to optimise computational efficiency, without losing their 

predictive capabilities. The framework includes main strengthening mechanisms, such as, 

precipitation strengthening, solid solution strengthening, the cross-core diffusion effect and 

work hardening. With the novel user-subroutine, the microstructure evolution of various 

thermo-mechanical treatments on the full integration point grid of the finite element (FE) 

mesh can be calculated. The validation of the simulations is carried out by mechanical testing 

as well as microstructure characterisation of an Al-6082 alloy, including transmission electron 

microscopy (TEM) investigations after various annealing times at 180 °C. 

Keywords: finite element analysis; flow curve; aluminium alloy; user-materials subroutine 

 

1. Introduction 

The knowledge of residual stresses and distortions, which can be introduced into a workpiece 

during the manufacturing process, is essential for the optimisation of both, the design of the 



72 

 

components and the processing parameters. Since plasticity is dependent on the thermo-

mechanical history of the material, the entire process chain, starting with solidification, must 

be taken into consideration for the simulation of temperature and strain rate-dependent 

stress evolution. An accurate material model is mandatory to relate flow stress to plastic 

strain. Many constitutive models were developed in the past decades, such as the Ludwik 

approach [1], the Voce type approach [2], the Johnson Cook model [3], Zerilli–Armstrong 

model [4], or the model of Khan and Huang [5]. Empirical material models or data table-based 

methods, which often describe experimental results but with limited physical meanings, are 

standard nowadays and they are included in most finite element analyses (FEA) tools. In 

contrast, advanced microstructure evolution models, which are, for instance, implemented in 

the MatCalc software package (http://matcalc.at, 12.07.2022), would lead to very long 

computing times and consume extensive computer memory, when included in FEA tools. FEA 

material models are presented in [6,7], which include strain hardening, recovery and 

recrystallisation, but do not consider precipitation kinetics or the evolution of excess 

vacancies. In the present paper, a mechanism- and state parameter-based model is 

introduced, which allows simulating the microstructure evolution in a metallic material during 

the manufacturing process and in-service conditions. In addition, the model allows for an 

extrapolation of these operating conditions, such as strain rate and temperature, while 

maintaining stable convergence behavior. Although the computation time can be up to twice 

as long as with typical standard models, a comprehensive microstructure description is 

provided, which gives insight into the underlying metallurgical processes that occur during the 

thermo-mechanical treatment. 

A new user-subroutine, suitable for incorporation in commercial FEA-software packages, is 

presented in the first part of this work, which is called ‘simple MicroStructure Evolution’ 

(sMSE) model in the following. The sMSE model is based on the mechanical threshold concept 

and an extended Kocks–Mecking approach, which allows to calculate the evolution of the 

average dislocation density during thermo-mechanical treatments. With the temperature and 

strain rate profiles given from the finite element software, the sMSE materials subroutine 

returns local yield stresses as well as the corresponding derivatives with respect to strain and 

strain rate back to the finite element software. 

The second part of the paper illustrates the application of this new framework to the 

simulation of flow curves in a precipitation-hardenable Al-6082 alloy in dependence of the 

http://matcalc.at/
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particular heat treatment condition. For this task, efficient models of precipitate nucleation 

and growth are included, which are an important component of the microstructure evolution 

beside the average dislocation density evolution. The work is, finally, experimentally validated 

by compression tests and electron microscopy investigations. The new framework 

conveniently balances low calculation time, which allows to simulate residual stresses of 

complex components, such as cylinder heads, and the evolution of physically based material 

properties on the full integration point grid of the FE-mesh. 

2. The Model 

The strength model consists of an athermal stress contribution 𝜎ath (see Section 2.1) and a 

thermally activated stress contribution 𝜎th (see Section 2.2). 𝜎ath is caused by forest 

dislocations and is expressed as an average dislocation density as formulated in an extended 

Kocks–Mecking approach [8]. 𝜎th includes strengthening mechanisms, such as, solid solution 

strengthening, precipitation strengthening, the cross-core diffusion effect and grain boundary 

strengthening in the mechanical threshold framework. The total stress contribution 𝜎 is given 

as a function of temperature T, strain rate 𝜀̇ and the vector of state parameter-based 

coefficients 𝝌, which can include the concentration of the alloying elements in the matrix, the 

radius and number density of precipitates or the dislocation density, for instance. 

𝜎 =  𝜎(T,𝜀̇,𝝌) (1) 

Adaptions of original models from literature are introduced for a suitable integration into the 

user-subroutine in FE simulations. Grain growth and recrystallisation effects are not included, 

because precipitation strengthening, and work hardening are the dominant mechanisms in 

the present experimental set up. Since a 6082 Al alloy is investigated, the model is introduced 

for an Al matrix with the two main alloying elements Mg and Si. Extension to higher-order 

systems is straightforward but not explicitly elaborated, here. 

2.1. Athermal Stress Contribution 

An extended one-parameter model of Kocks and Mecking is used to calculate the temperature 

and strain rate-dependent dislocation density evolution [8,9] 

𝑑𝜌

𝑑𝜀
=  
𝑑𝜌+

𝑑𝜀
+ 
𝑑𝜌−

𝑑𝜀
+
𝑑𝜌𝑠

−

𝑑𝜀
=   

𝑀

𝑏·𝐴
√𝜌 − 2·𝐵·𝑀

𝑑𝑐𝑟𝑖𝑡
𝑏
𝜌 − 2·𝐶·𝐷𝑑

𝐺𝑏3

𝜀̇𝑘𝐵𝑇
(𝜌2 − 𝜌𝑒𝑞

2 ) (2) 
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M is the Taylor factor, b is the Burger’s vector, 𝑘B is the Boltzmann constant, G is the shear 

modulus, A, B and C are temperature and strain rate-dependent coefficients. Kreyca et al. [8] 

related the coefficients A, B and C to the initial hardening rate 𝜃0 and the saturation stress 𝜎∞. 

𝑑crit is the critical annihilation distance between two dislocations of opposite sign of the 

Burgers’ vector [10] and 𝜌eq is the equilibrium dislocation density. 
d𝜌+

d𝜀
 represents the 

dislocation generation rate, which is inversely proportional to the current mean distance 

between dislocations and the total dislocation density, 𝜌.  
d𝜌−

d𝜀
 and 

d𝜌𝑠
−

d𝜀
 take into account the 

annihilation of dislocations by cross slip processes and vacancy-assisted climb, respectively. 

The first annihilation term describes dynamic recovery processes at low and medium 

temperatures, whereas the second term represents static recovery at elevated temperatures. 

The latter quantity is marked by the subscript s. For each time integration interval Δt, the 

average dislocation density 𝜌 is correlated with the athermal plastic stress contribution by the 

Taylor equation [11,12] with 

𝜎p = 𝛼·𝑀·𝑏·𝐺·√𝜌  (3) 

where 𝛼 is the strengthening coefficient. Further details on the implementation of the 

athermal strength framework are described in [13]. 

2.2. Thermal Stress Contributions 

Many state parameter-based yield strength models capture the influence of temperature and 

strain rate on plastic deformation of polycrystalline materials in various ways [14–23]. One 

example is given in [8], where a low temperature and a high temperature part can be 

distinguished, labelled by ‘lt’ and ‘ht’ in the following. When dislocation motion is 

characterised by glide processes, the stress can be expressed as 

𝜎lt = 𝜏̂·exp (
−𝑘B·𝑇

∆𝐹𝜎0
lt

· ln (
𝜀0̇
𝜀̇
)) (4) 

where the subscript ′𝜎0′ refers to the initial yield stress, 𝜀0̇ is a constant and 𝜏̂ is the mechanical 

threshold, defined by the sum of a basic stress, solid solution hardening (see Section 2.2.1), 

cross core diffusion hardening (Section 2.2.2), grain size hardening, sub-grain size hardening 

and precipitation hardening (Section 2.2.3) in the absence of thermal activation. 

When dislocation climb becomes dominant at high temperatures, the following stress 

contribution can be used [8] 
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𝜎ht = 

(

 
 
𝜏̂·

𝜀̇∗·𝑘B·𝑇·(𝛼·𝑏·𝐺)2

2𝑏𝑐∆𝐹𝜎0
ht· exp (−

∆𝐹𝜎0
ht

𝑘B𝑇
)
)

 
 

1
𝑛

 (5) 

c is the speed of sound, and the exponent n of the power law equation varies between 3 and 

10 [24]. The true strain rate is modified in the present framework by the exponent 𝑛𝜀̇ to 

reduce the strain rate dependency with 𝜀̇∗  = 𝜀̇𝑛𝜀̇ . The activation energies ∆𝐹𝜎0
lt  and ∆𝐹𝜎0

ht 

depend on the effective solute concentrations in the matrix [25–28], which vary due to the 

cross-core diffusion effect and by the nucleation and growth of precipitates (see Section 2.3). 

The total thermal stress 𝜎0 is evaluated by the summation rule according to 

𝜎0 = ((
1

𝜎lt
)
𝑛c

+ (
1

𝜎ht
)
𝑛c

)

1
𝑛c

 (6) 

where 𝑛c is a coupling coefficient. 

The overall temperature- and strain rate-dependent stress response at an applied constant 

strain rate 𝜀̇ is given by the summation of the athermal stress contribution 𝜎p of Equation (3) 

and the thermal stress contribution 𝜎0 of Equation (6). 

2.2.1. Solid Solution Hardening 

To incorporate the solid solution strengthening contribution into the present framework, the 

following equation is utilized, based on the Labusch approach [29] 

𝜎SS = (∑(𝑘𝑖𝑐𝑖

2
3)

𝑛SS

𝑖

)

1
𝑛SS

 (7) 

The subscript ‘SS’ refers to solid solution and the sum is taken over all alloying elements, i. The 

contribution of the alloying elements with the concentrations 𝑐𝑖 are calculated separately and 

summed up, using the exponent 𝑛SS. 𝑘𝑖  is defined by 

𝑘𝑖 = (
𝑓max

4·w

8·𝐸L·𝑏7
)

1
3

 (8) 

𝑓max is the maximum interaction force between the solutes and the dislocations, which is 

defined by [29] 
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𝑓max =
√3

2
· (
1 + 𝜈

1 − 𝜈
)𝐺𝑏2|𝜀𝑚| (9) 

𝑤 = 5𝑏 is the interaction distance and the dislocation line tension 𝐸L= 
1

2
·𝐺·𝑏2 [30]. 𝜈 is the 

Poisson’s ratio and 𝜀m is the misfit strain between solute and matrix atoms. 

2.2.2. Cross-Core Diffusion Hardening 

Dynamic strain aging (DSA) phenomena occur by the interaction of diffusing solutes with the 

stress fields of dislocations and retard the ongoing dislocation motion. Since the possible 

negative strain rate sensitivity can lead to plastic material instabilities due to local material 

softening, it plays a key role in material processing [31]. A well-known example for DSA is the 

Portevin–LeChatelier effect, which manifests itself in serrated stress–strain behavior. In the 

sMSE framework, the cross-core diffusion effect is included as developed by Curtin et al. [31]. 

The model is based on single atomic jumps of solutes from the compression side to the tension 

side in the core of a dislocation, leading to the additional strain rate-dependent strengthening 

[31] as 

∆𝜏s(𝜀̇) =  𝛼 (
2𝑐0∆𝑊̅̅ ̅̅ ̅

√3𝑏3
) tanh(

∆𝑊̅̅ ̅̅ ̅

2𝑘B𝑇
) [1 − 𝑒

−6cosh(
∆𝑊̅̅ ̅̅ ̅

2𝑘B𝑇
)гc
Ω
𝜀̇] (10) 

𝛼 = 0.56, 𝑐0 is the bulk solute concentration in each iteration step, ∆𝑊̅̅ ̅̅ ̅ is the average binding 

energy difference between the core compression and tension sites, Ω is a constant in this 

framework, гc is the reference core transition rate with 

гc = 𝜈0𝑒
−∆𝐻c
𝑘B𝑇  (11) 

where 𝜈0 is the attempt frequency and ∆𝐻c is the average activation enthalpy for transitions 

from tension to compression and vice versa. Generally, higher temperatures and smaller strain 

rates lead to more diffusion and, consequently, to higher cross-core diffusion strengthening. 

The effective concentration of solutes on the tension side of a dislocation core is calculated as 

[31] 

𝑐eff = 𝑐0 + 𝑐0 tanh (
∆𝑊̅̅ ̅̅ ̅

2𝑘B𝑇
) [1 − 𝑒

−6cosh(
∆𝑊̅̅ ̅̅ ̅

2𝑘B𝑇
)г𝑐

Ω

𝜀̇].  (12) 
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Continuous changes of the effective concentration 𝑐eff influences the strengthening 

contribution ∆𝜏s, which is linearly superimposed to the mechanical threshold. The cross-core 

diffusion effect is directly included to the sMSE framework without any simplification. 

2.2.3. Precipitation Hardening 

Obstacles within a material, such as precipitates, can hinder dislocation motion and thus lead 

to an increased strength of the material. In general, small and coherent precipitates can be 

sheared by dislocations, whereas, above a certain critical size, a transition to bypassing and 

formation of dislocation loops around the precipitates occurs. In the following, the stress 

contribution based on the Orowan dislocation looping mechanism [32], as well as the shearing 

mechanism is outlined and the equations, which are implemented in the sMSE framework, 

are presented. The mechanism, which delivers the least contribution to the total stress, is 

assumed to be the operative one and it is labelled 𝜎prec in the following. For simplification, no 

distinction between weak and strong precipitates is included, as described in detail, for 

instance, in [33]. 

The interaction of dislocations and non-shearable precipitates was first described by Orowan 

[32] and later modified by Ashby [34], Brown and Ham [35], and Ardell [36]. The implemented 

equations are taken from Ahmadi [33], based on the original Orowan model. The subscript ‘O’ 

is used subsequently and the Orowan strength is taken as 

𝜎O = 
𝐶O·G·b·M

2·𝜋·𝐿S
· log (

𝑅eq

2·b
) (13) 

where 𝐶O is the precipitation strengthening coefficient and 𝐿S is the mean distance between 

two equally sized spherical precipitate surfaces with [37] 

𝐿S = √
ln(3)

2·𝜋·𝑁·𝑟
+
8

3
𝑟2 −√

8

3
𝑟 (14) 

N is the number density and r is the radius of the precipitate; the evolution equations are given 

in Section 2.3. The equivalent radius 𝑅eq in Equation (13) describes the precipitate-dislocation 

interference area with 

𝑅eq = 
𝜋

4
·𝑟 (15) 

To avoid negative values for the Orowan contribution, the equivalent radius has a minimum 

value of 4·b. 



78 

 

The shearing mechanisms involve the coherency effect, the modulus effect, the stacking fault 

effect and the interfacial effect. For simplicity, only the coherency effect, which provides the 

largest strengthening contribution in many practical applications, is included in the present 

framework. The coherency effect is based on the interaction of the elastic strain field, which 

is caused by the difference between the molar volumes of matrix and the precipitate, with a 

moving dislocation [33]. The stress contribution for coherency strengthening is given as 

𝜎Coh = 
1.3416 cos(𝜃)2 + 4.1127 sin(𝜃)2

𝐿S
·(
𝐺3·𝜀3·𝑅eq

3 ·𝑏

𝐸L
)

1
2

·𝑀·𝐶Coh (16) 

where 𝜃 is the angle between dislocation line and its Burgers vector. 𝜃 = 0 for pure screw 

dislocations and 𝜃 =
𝜋

2
 for pure edge dislocations. In the present treatment, 𝜃 =

𝜋

4
 is taken as 

a mean value. The linear misfit 𝜀 is approximated as 
1

3
 of the volumetric misfit. 𝐶Coh is the 

precipitation strengthening coefficient, which is a calibration parameter. 

2.3. Precipitation Kinetics Model 

Supersaturated states are unstable since a driving force exists to minimize the Gibbs free 

energy by the formation of a new phase, rearrangement of existing phases or redistribution 

of alloying constituents. For the evolution of the precipitate microstructure, the SFFK model 

[38–40] can be utilized, which is, for instance, implemented in the MatCalc software package 

(http://matcalc.at, 12.07.2022). However, these models need to be simplified to minimise 

both, the calculation time as well as the memory resources, within an FE framework. To 

determine the driving force for nucleation of precipitates, the knowledge of the equilibrium 

concentrations of Mg and Si in the Al matrix can be taken as a starting point. 𝑋Mg
0  and 𝑋Si

0  are 

the nominal Mg and Si mole fractions in the system and 𝑋Mg
p

 and 𝑋Si
p

 are the Mg and Si 

fractions inside the precipitates. The following description is given for one specific 

precipitation phase, e.g., clusters or the β″ phase, but the extension to a multi-phase system 

is straightforward. The Mg and Si concentrations in equilibrium within the fcc Al matrix is given 

by mass conservation. 

𝑋Mg
fcc_eq

= 𝑋Mg
0 − 𝑋Mg

p
·𝑓eq (17) 

𝑋Si
fcc_eq

= 𝑋Si
0 − 𝑋Si

p
·𝑓eq (18) 

http://matcalc.at/
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𝑓eq is the equilibrium phase fraction of the precipitate, which is calculated by solving the 

following solubility product by numerical methods 

𝑋Mg
p

· log(𝑋Mg
fcc_eq

) + 𝑋Si
p

· log(𝑋Si
fcc_eq

) − ∆𝐺 = 0 (19) 

where ∆𝐺 is the energy of (precipitate) dissolution normalized with respect to RT 

∆𝐺 =
𝐶

𝑇
+ 𝐷 (20) 

C and D are input parameters within the sMSE framework. In contrast to classical precipitation 

calculations based on, e.g., the CALPHAD method, no thermodynamic databases are used in 

the sMSE framework, and the driving force is calibrated by the parameters 𝐶 and D. The molar 

driving force for precipitation nucleation is approximated with 

𝑑m = 𝑅·𝑇·(𝑋Mg
p

·log(
𝑋Mg
fcc

𝑋Mg
fcc_eq

) + 𝑋Si
p

·log(
𝑋Si
fcc

𝑋Si
fcc_eq

)). (21) 

The nucleation of new precipitates can be evaluated on the basis of the steady-state 

nucleation rate, which is defined as the number of newly formed precipitate nuclei per unit 

volume and unit time as [41,42] 

𝐽 = 𝑁0·𝑍·𝛽∗·𝑒
−𝐺∗

𝑘B𝑇 (22) 

where 𝑁0 is the number of available nucleation sites, 𝑍 is the Zeldovich factor, 𝛽∗ is the atomic 

attachment rate and 𝐺∗ is the critical nucleation energy. The Zeldovich factor is expressed as 

[41,43], 

𝑍 =  (
𝑏6

64𝜋2𝑘B𝑇

(
𝑑m
𝜈𝛼
)
4

𝛾3
)

1
2

 (23) 

𝜈𝛼 represents the molar volume of the precipitate. In this simplified framework, an average 

molar volume of 10−6 [m3/mol] is assumed for all phases. 𝛾 is the specific interfacial energy. 

The critical nucleation energy is given by 

𝐺∗ =
16𝜋

3

𝛾3

(
𝑑m
𝜈𝛼 )

2 (24) 

The atomic attachment rate reads 
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𝛽∗ =
4𝜋𝑟crit

2

𝑏4
𝐷eff (25) 

with the critical radius 

𝑟crit =
2𝛾

𝑑m
𝜈𝛼

 (26) 

The effective diffusion coefficient 𝐷eff is taken as 

𝐷eff = 𝐷0·exp (
−𝑄

𝑅·T
) ·(

𝑋Va
𝑋Va,eq

) (27) 

𝐷0 is the pre-exponential factor, 𝑄 is the activation energy for diffusion, 𝑋Va is the current 

vacancy concentration and 𝑋Va,eq is the equilibrium vacancy concentration. The evolution of 

quenched-in vacancies is described on the basis of the FSAK-model [44], which considers the 

formation and annihilation of vacancies at grain boundaries, dislocation jogs or Frank loops. 

The change of mean radius in each time step due to precipitate growth is evaluated from the 

original SFFK treatment by solving the evolution equations for a single diffusing species and 

under the assumption that the precipitate is a stoichiometric compound. The rate of the radius 

due to particle growth, 𝑟̇g, is then obtained with 

𝑟̇g =
𝑑m
𝑅𝑇𝑟

·𝐷eff (28) 

After the growth of precipitates has seized due to decreasing supersaturation, further growth 

of large particles commences at the expense of the smaller particles. This so-called coarsening 

process occurs with continuously increasing mean radius of the precipitates and a 

simultaneous decrease of their number density. The radius change due to coarsening in the 

classical LSW mean-field approximation reads 

𝑟̇LSW =
1

3𝑟2
·𝐾LSW (29) 

where the subscript ‘LSW’ refers to the original work of Lifshitz and Slyozov [45] and Wagner 

[46]. The coarsening rate constant is obtained as [47], 

𝐾LSW =
8𝛾𝜈𝛼

9𝑅𝑇

𝐷eff·𝜂LSW_fact

(
(𝑋Mg

p1
− 𝑋Mg

0 )
2

𝑋Mg
0 +

(𝑋Si
p1
− 𝑋Si

0 )
2

𝑋Si
0 )

 

(30) 
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where the effective diffusion coefficient 𝐷eff is used in this framework and 𝜂LSW_fact is a fitting 

parameter. 

2.4. State-Dependent Variables 

For each time integration step dt, the evolution of the vector of state parameters, 𝝌, is 

calculated within the subroutine. Table 1 assigns all state dependent variables to either 

thermal or athermal stress. The final stress 𝜎(T,𝜀̇,𝝌) is then calculated by the sum of 𝜎th and 

𝜎at. 

Table 1. Assignment of all state variables to thermally activated 𝜎th and athermal 𝜎at. 

Name 𝝈𝐭𝐡 𝝈𝐚𝐭 

Mg concentration within the fcc Al matrix 𝑋Mg
fcc x  

Si concentration within the fcc Al matrix 𝑋Si
fcc x  

Current vacancy concentration 𝑋Va x  

Number density of precipitates N x  

Radius of precipitates r x  

Dislocation density 𝜌  x 

Figure 1 shows a flow chart of a FEA solution procedure, where the input parameters are T, 

𝜀̇ and ∆t. The temperature gradient, 𝑇̇, is not provided by all FEA software, which is why it is 

written in brackets. The state parameters are updated every time the final iteration step is 

performed. σ, 
𝑑𝜎

𝑑𝜀
 and 

𝑑𝜎

𝑑𝜀̇
 are returned every time the materials subroutine is called by the FEA 

program. 
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Figure 1. Flow chart of an FEA procedure, indicating the update of the state parameters after 

the final iteration step Dt. 

3. Experimental 

3.1. Material and Heat Treatment 

The process of parameter identification and calibration of the present model is divided into 

two parts: (i) analysis of the nucleation and growth kinetics of precipitates during artificial 

aging, and (ii) characterisation of the work hardening behavior evaluated with compression 

tests. The chemical composition of the commercial AA6082 aluminium alloy, which is used in 

the present experiments, is given in Table 2. 

Table 2. Composition of alloy AA6082 in wt%. 

Alloy Al Si Mg Cu Fe Mn Cr Ti Zn V 

AA6082 bal. 1.22 0.861 0.083 0.254 0.640 0.184 0.026 0.021 0.0105 

After die-casting, the material is homogenised at 560 °C for 2 h, which represents the as-

received state for the investigations. The specimens are then solution heat treated at 560 °C 

for 50 min in a circulating air furnace (Carbolite Type 3508), water-quenched and artificially 

aged in an oil bath between 0.5 h and 8 h for the first experimental setup (i). Between the 

solid solution heat treatment and the artificial aging (ii), the material remained at RT for 20 

min. 
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3.2. Mechanical Testing 

The compression tests are carried out in a high-speed quenching and deformation dilatometer 

DIL 805 A/D. Cylindrical specimens with lengths of 10 mm and diameters of 5 mm are 

produced from the as-received state. Prior to the deformation step, the specimens are 

solution heat treated at 530 °C for 5 min and helium-cooled with a cooling rate of 50 K/s to 

the deformation temperatures (25, 100, 200, 300, 400 and 500 °C), where they are held for 10 

s to achieve sufficient thermal equilibration. Each deformation test is repeated at least twice 

with applied true strain rates of 0.1 s−1 and 1 s−1. 

Brinell hardness measurements (HBW 1/10) are carried out in an EMCO-Test M1C 010 unit, 

where at least eight measurements are performed for each aging time. 

3.3. Electron Microscopy 

Transmission electron microscopy (TEM) is applied for microstructure characterisation. The 

specimens are ground with SiC-papers until a thickness of approximately 0.1 mm is achieved. 

Subsequently, discs of 3 mm in diameter are punched out and electrochemically etched using 

a Struers Tenupol-5 in order to obtain electron-transparent regions. This process is carried out 

in a 2:1 mixture of methanol and nitric acid at temperatures between −20 °C and −10 °C 

applying a polishing voltage of 10 V. The analysis is performed on an FEI TECNAI F20 

microscope equipped with a field emission gun and operated at 200 kV acceleration voltage. 

Bright field images in <001>Al zone axis reveal the lengths of the needle-shaped precipitates, 

whereas precipitate diameters are estimated using high-resolution transmission electron 

microscopy (HRTEM). The thickness of the observed regions is measured by electron energy 

loss spectrometry (EELS) using the t/λ (log-ratio) methodology [48]. Upon data collection, 

average lengths, diameters, and number densities of the precipitates are estimated. 

4. Simulation 

To demonstrate the potential of the present state parameter-based concept, all simulations 

are conducted on the basis of one single set of input parameters. Table 3 summarises all input 

parameters for the precipitation kinetics calculation as described in Section 2.3. The 

parameters are calibrated on the precipitation statistics determined by TEM. In this setup, 

only one precipitate type is listed, since only 𝛽′′ precipitates are detected in TEM during the 

deformation tests. Although a second precipitate type is available for simulation in the sMSE 
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framework, only the observed 𝛽′′ is accounted for in the following example according to 

experimental evidence. 

Table 3. Input parameters for the precipitation kinetics simulation as described in Section 

2.3. 

Symbol Name Unit Value Equation Source 

𝑋Mg
p

 Stoichiometry: Mg5Si6 (𝛽′′) - 5/11 (17), (19) [49] 

𝑋Si
p

 Stoichiometry: Mg5Si6 (𝛽′′) - 6/11 (18), (19) [49] 

𝐶 
Normalized driving force calibration 

parameter 
K −950 (20) This work 

𝐷 
Normalized driving force calibration 

parameter 
- −3.35 (20) This work 

𝑁0 Number of available nucleation sites 1/m3 1028 (22) (MatCalc) 

𝛾 Specific interfacial energy J/m2 0.09 (23), (24), (30) This work 

𝐷0 Pre-exponential factor for diffusion m2/s 3 × 10−8 (27) This work 

𝑄 Activation energy for diffusion J/mol 119,000 (27) This work 

𝜂LSW_fact LSW coarsening factor - 1 (30)  This work 

h Shape parameter of 𝛽′′ - 5 (32) This work 

Table 4 lists the input parameters for the strengthening models, which are described in 

Sections 2.1 and 2.2. The parameters are calibrated on basis of the flow curves obtained in 

the compression tests. Since precipitation strengthening significantly impacts the yield stress, 

calibration of the precipitation kinetic models is carried out prior to the calibration of the work 

hardening models. 

Table 4. All input parameters for the strengthening models as described in Sections 2.1 and 

2.2. 

Symbol Name Unit Value Equation Source 

M Taylor factor - 3.06 
(2), (3), (13), 

(16) 
[50] 

𝑏 Burger’s vector m 2.86 × 10−10 
(2), (3), (5), 

(9), (13), (16) 
[24] 

G Shear modulus MPa 29,438.4–15.052·T 
(2), (3), (5), 

(9), (13), (16) 
[23] 

α Strengthening coefficient - 0.34 (3), (5) [12],[51,52] 

𝜌0 Initial dislocation density m/m3 1011 (4) (MatCalc) 

𝑐 Speed of sound m/s 5100 (4), (5) [23] 

𝜀0̇ Constant 1/s 𝜌0·c·b (4) [23] 

𝜎basic Basic stress MPa 120 (4), (5) This work 

∆𝐹σ0
lt  

Low temperature activation 
energy 

J 0.75·G·𝑏3 (4) This work 
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∆𝐹𝜎0
ht 

High temperature activation 
energy 

kJ/mol 130 (5) This work 

𝑛𝜀̇ Strain rate exponent - 0.5 (5) This work 

𝑛 Power law exponent - 3 (5) This work 

𝑛c 
Low and high temperature 

coupling coefficient 
- 2 (6) This work 

𝑛ss Solid solution coupling exponent - 1.8 (7) (MatCalc) 

𝜈 Poisson’s ratio - 0.347 (9) [53] 

𝜀m_Mg Misfit-strain for Mg - 0.0123 (9) [54] 

𝜀m_Si Misfit-strain for Si - 0.0074 (9) [54] 

∆𝑊̅̅ ̅̅ ̅ 
Average binding energy 

difference 
J 2.08 × 10−20 (10), (12) [31] 

Ω constant - 0.00063 (10), (12) [31] 

𝜈0 Attempt frequency 𝑠−1 3.8 × 1013 (11) [55] 

∆𝐻c 
Activation enthalpy for 

transitions from tension to 
compression 

J 1.55 × 10−19 (11) [31] 

𝐶O 
Precipitation strengthening 
coefficient for the Orowan 

mechanism 
- 5 (13) This work 

𝐶Coh 
Precipitation strengthening 

coefficient for the coherency 
effect 

- 1 (16) This work 

𝜈∗ Volumetric misfit - 0.05 (16) This work 

∆𝐹𝜃0
lt  

Low temperature activation 
energy for strain hardening 

rate 𝜃 
kJ/mol 700 [8] This work 

∆𝐹𝜃0
ht 

High temperature activation 
energy for strain hardening 

rate 𝜃 
kJ/mol 75 [8] This work 

∆𝐹𝜎sat
lt  

Low temperature activation 
energy for saturation stress 

𝜎sat 
J 0.3·G·𝑏3 [8] This work 

∆𝐹𝜎sat
ht  

High temperature activation 
energy for saturation stress 

𝜎sat 
kJ/mol 110 [8] This work 

𝛽1 
Flow stress correction factor 

for low strains 
- 35 [13] This work 

𝛽2 
Flow stress correction factor 

for low strains 
- 0.625 [13] This work 

𝛽exp 
Flow stress correction 

exponent for low strains 
- 2.5 [13] This work 
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5. Results and Discussion 

5.1. Hardness Tests 

The experimentally observed hardness curve for artificial aging at 180 °C is shown in Figure 2. 

The hardness rapidly increases until a peak is reached after approximately 8 h. Afterwards, 

the hardness decreases again due to overaging (coarsening) of the 𝛽′′ precipitates. In addition, 

𝛽′′, which is assumed to be the main hardening phase in the 6xxx series alloys [49], transforms 

into 𝛽′. The latter process is not considered in the present analysis, though. 

 

Figure 2. Brinell hardness as a function of aging time at 180 °C. 

5.2. Precipitation Evolution 

Figure 3 shows bright-field TEM images after annealing at 180 °C for different annealing times 

between 0.5 h and 8 h. The length of the precipitates rarely exceeds 10 nm at an annealing 

time of 0.5 h, whereas 27 nm is measured in the main growth directions at peak ageing. 
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(a) (b) (c) 

   

d) (e) (f) 

Figure 3. TEM images after annealing at 180 °C for (a) 0.5 h; (b) 1 h; (c) 2 h; (d) 3 h; (e) 4 h and 

(f) 8 h. 

Figure 4a shows the temperature profile of the heat treatment of the specimens, where the 

starting point for the annealing step is illustrated by the doted, vertical lines in Figure 4a–d. 

The symbols indicate the experimental results for the number density, the length of the 

precipitates and the phase fraction. The number density N is calculated from [56] 

𝑁 = 
3·𝑁𝑣

(𝑙 + 0.8·t)·𝐴FOV
 (31) 

𝑁𝑣 is the number of precipitates of the field of view (FOV) of the TEM image, l is the mean 

length of the precipitates, t is the thickness of the specimen, which is measured by EELS, and 

𝐴FOV is the area of the field of view. Since the evolution of the mean radius r of a spherical 

particle is calculated within the sMSE framework, a conversion to the needle-shaped 𝛽′′ is 

necessary. This is done by Equation (32), with the shape parameter h [57]. The length l of the 

precipitates increases in good agreement with the measured values as shown in Figure 4c. 
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𝑙 =  √
16

3
𝑟3ℎ2

3

 (32) 

It should be emphasised that all precipitates are assumed to be 𝛽′′ in this simplified 

framework, because 𝛽′′ is known to be the main strengthening phase during a T6 heat 

treatment. The measured number density is almost constant at low annealing times and 

increases slightly after two hours. The simulations show that the number density of 𝛽′′rapidly 

increases when the material is heated up to 180 °C and remains constant during the holding 

time. 

  

(a) (b) 

  

(c) (d) 

Figure 4. (a) The applied heat treatment; (b) number density; (c) length and (d) phase fraction. 

Solid lines represent simulation results, while symbols indicate experimental results. 
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5.3. Deformation Tests 

Figure 5 shows the flow curves of the compression tests at temperatures between 25 °C and 

500 °C and applied true strain rates of 0.1 s−1 (a) and 1 s−1 (b). The lines represent sMSE 

simulations, where all calibration parameters are listed in Tables 3 and 4. The stress simulation 

comprises all strengthening contributions, which have been discussed in Sections 2.1 and 2.2. 

The simulations show that, the lower the deformation temperature is, the higher is the work 

hardening contribution. The stronger hardening behavior at 200 °C and 300 °C at the lower 

deformation rate is due to strain-induced precipitation hardening. This effect is accounted for 

by an (artificially) adjusted specific interfacial energy of 𝛾 = 0.085 𝐽/𝑚2. To demonstrate the 

influence of precipitation strengthening on the work hardening behavior, simulations without 

precipitation strengthening, which are marked with *, are included. 

  

 

(a) (b)  

Figure 5. Flow curves at different temperatures at applied true strain rates of (a) 0.1 s-1 and 

(b) 1 s-1. Solid lines represent simulation results, while symbols indicate experimental results. 

Simulations without precipitation strengthening are marked with *. 

To calculate internal stresses using the FEM mesh, an accurate simulation of the yield strength 

is required. Figure 6a shows the values for 𝑅p0.2 as a function of temperature for both strain 

rates, 0.1 s−1 and 1 s−1. The stress values are higher for higher strain rates, except for a 

temperature of 100 °C and 200 °C. Although the quenching time and the holding time on the 

deformation temperature are very short, an explanation is given by the cross-core diffusion 

process on the one hand, and precipitation strengthening on the other hand. The calibration 
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for the precipitation nucleation process and precipitation growth is discussed in Section 2.3. 

In Figure 6b, the experimental results of the yield stress are compared to the results of the 

simulation for both strain rates and six different temperatures. Although simplified models 

are used in the sMSE framework, experiment and simulation are in good agreement for 

different temperatures and strain rates with a single set of input parameters. 

  

(a) (b) 

Figure 6. (a) Yield stresses as a function of temperature for strain rates of 0.1 s−1 and 1 s−1. (b) 

Comparison of simulated and experimentally obtained flow stresses. 

6. Conclusions 

A state parameter-based framework for plastic deformation modelling is introduced, which is 

suitable for implementation in a user-subroutine in commercial FE-software packages. Well 

established nucleation and growth models for precipitation kinetics, as well as models for 

strengthening mechanisms, such as solid solution strengthening, precipitation strengthening 

and work hardening, are brought into a condensed form to reduce the calculation time for the 

stress simulation of possible complex structures. In this framework, two alloying components 

are considered, as well as two precipitate types, which are defined by constant stoichiometry, 

are included. Although severe simplifications are adopted, flow curves at various 

temperatures and strain rates are successfully reproduced and the trend of nucleation and 

growth of precipitates are reflected. 
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Abstract:  

During thermo-mechanical processing, dissolved alloying elements have a huge impact on the 

microstructure evolution by influencing the overall dislocation storage rate. Especially, for 

non-heat treatable Al alloys, the effects of strain hardening and solid solution strengthening 

are of significant practical interest. In the present work, a detailed study of the room-

temperature work-hardening behavior of binary Al-Cu, Al-Zn, and Al-Mn alloys with varying 

solute concentrations is carried out. Stress-strain curves at different strain rates are recorded 

and computationally analyzed by an advanced 3-Internal-Variables-Model (3IVM) approach 

for the dislocation density evolution. The initial strengthening rate is examined as a function 

of the solute concentration.  

Keywords: Strengthening mechanisms, Dislocations, Rate-dependent material, Mechanical 

testing  

1. Introduction  

Accurate and reliable constitutive models of dislocation–solute interactions are mandatory for 

the design of new alloys. The influence of alloying elements on the properties of the materials 

is manifold: Solid solution strengthening increases the yield stress [1], the energy of thermal 

activation is modified [2–4], and the evolution of mobile dislocations is changed [5]. Solid 
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solution strengthening is determined by the interaction of dislocation and solute atoms, 

leading to the following mechanisms: size effect [6], modulus effect [7], Suzuki effect [8], and 

electrostatic interaction [9]. The size effect is often the most important contribution and is 

based on the misfit strain, caused by the size difference of the substitutional solute atom, 

compared to the matrix element. These misfit strains can be obtained by first principle studies 

[3]. Mott and Nabarro suggested a linear relationship between the stress and the atomic 

concentration, c [10], Friedel correlated the stress with c1/2 [11], and Labusch suggested a 

dependency of c2/3 [1]. As demonstrated by Leyson and Curtin [12], the Labusch model 

controls the strengthening for concentrations greater than 10-4 (at.%) and temperatures 

above 78 K for Al alloys. Therefore, the Labusch model is used for the simulation of solid 

solution strengthening in the present work. Apart from solutes, precipitates and grain 

boundaries are potential obstacles for moving dislocations. The characteristic energy barrier 

for pinned segments is assumed to be dependent on c1/3 [2–4].  

Apart from influencing the yield stress and the activation energy for dislocation movement, 

solute atoms modify the strain-hardening behavior (see, e.g. refs. [13,14]). The formation 

mechanisms of mobile- and immobile dislocation structures are discussed in literature (e.g., 

in [15]), but detailed studies of their concentration dependencies are often missing. Therefore, 

binary Al-X (X = Mn, Zn, Cu) alloys are analyzed in the present paper and the generation of 

dislocations and the dynamic recovery are expressed as a function of the concentration of the 

alloying elements. An increasing hardening rate can be interpreted as a decrease in the 

stacking fault energy and the subsequent drop in the cross-slip probability of dislocations due 

to solute additions [16]. However, an opposing effect is also reported in refs. [17–19]. A 

decreased stacking fault energy reduces the generation rate of new dislocations since double 

cross slip can result in new Frank-Read sources. Furthermore, local solute concentration in the 

dislocation core influences strain hardening by modifying the critical annihilation distance for 

dynamic recovery [5]. 

The model for the simulation of the mechanical properties of the alloys consists of a thermal 

stress contribution, including solid solution strengthening, as well as an athermal work 

hardening. An advanced 3-Internal-Variables-Model (3IVM) [20,21] is used and adapted to 

describe the cellular dislocation microstructure, which is characterized by cell interior 

dislocations and cell wall dislocations. The strain rate- and concentration-dependency of 

mobile and immobile dislocation production, as well as dynamic and static recovery are 
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analyzed for all binary Al alloys of the present study. Through this approach, both, the 

strengthening contribution of solutes as well as its influence on the microstructure evolution 

during the deformation process are described. Suitable heat treatments suppress 

strengthening due to grain refinement and precipitation strengthening. 

In the first part of the work, the models for the flow curve simulations are introduced. In the 

second part, the experimental results are compared to simulations, which are performed with 

the thermo-kinetic software package MatCalc (http://matcalc.at), version 6.04.0134, which 

incorporates the suggested models. 

2. The model 

The present model comprises a thermal stress contribution, 𝜎th, which is based on the 

mechanical threshold concept, and an athermal stress contribution, 𝜎ath, which accounts for 

the impact of dislocations. The total stress contribution, which is strongly dependent on the 

microstructure, is calculated by the superposition of both stress contributions. 

2.1 Thermal stress contribution 𝜎𝑡ℎ  

Plastic deformation of polycrystalline materials can be described by empirical models, such as 

those developed in refs. [22–26], or by state parameter-based yield strength models, as given 

in refs. [27–36]. In a physically-based picture of plastic deformation, a mobile dislocation can 

overcome an obstacle/energy barrier by thermal activation. Kreyca and Kozeschnik [37] 

distinguish between a low-temperature regime, ‘lt’, where dislocation glide is dominant, and 

a high-temperature regime, ‘ht’, where obstacles can be overcome by climbing processes of 

dislocations. Since all deformation tests are carried out at room temperature, in the present 

work, only 𝜎lt is of relevance (𝜎th = 𝜎lt), which can be expressed by the Arrhenius type 

equation [37] 

 𝜎lt = 𝜏̂·exp (
−𝑘B𝑇

∆𝐹lt
· ln (

𝜀0̇
𝜀̇
)). (1) 

𝜏̂ is the mechanical threshold, which comprises the basic stress, solid solution strengthening 

𝜎SS (see 2.1.1), and strengthening stemming from the cross-core diffusion effect [38]. 𝑘B is 

the Boltzmann constant, T is the temperature, 𝜀0̇ is a constant and 𝜀̇ is the strain rate. The 
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activation energy ∆𝐹lt depends on the effective concentration, 𝑐eff, of the alloying elements, 

and is given by [37] 

∆𝐹lt = (𝑘1 + 𝑘2·𝑐eff
𝑛 )·𝐺𝑏3. (2) 

𝑘1 and 𝑘2 are constants, n is a fitting exponent, b is the Burgers vector and G is the shear 

modulus. The cross-core diffusion effect [38] is accounted for in the effective concentration 

𝑐eff. 

2.1.1 Solid solution hardening 

To incorporate the solid solution strengthening contribution in the present framework, the 

following equation, which is based on the Labusch approach [1], is utilized 

𝜎SS = (∑ (𝑘𝑖𝑐𝑖

2

3)

𝑛SS

𝑖 )

1

𝑛SS

. (3) 

The subscript ‘SS’ refers to solid solution. The contributions of the alloying elements, with the 

concentrations 𝑐𝑖, are calculated separately and summed up, using the exponent coefficient 

𝑛SS. 𝑘𝑖  is adopted from [1] and reads as 

 𝑘𝑖 = (
𝑓max

4·w

8·𝐸L·𝑏7
)

1

3
. (4) 

𝑓max is the maximum interaction force between the solute and the dislocation, given by [1] 

𝑓max =
√3

2
· (
1 + 𝜈

1 − 𝜈
)𝐺𝑏2|𝜀m|. (5) 

𝑤 = 5𝑏 is the interaction distance and the dislocation line tension 𝐸L= 
1

2
·𝐺·𝑏2 [39]. 𝜈 is the 

Poisson’s ratio and 𝜀m is the misfit strain between solute and matrix atoms.  

2.2 Athermal stress contribution 𝜎𝑎𝑡ℎ  

For the calculation of the athermal stress contribution, an advanced ABC model is used, which 

is derived from the original 3-Internal-Variables-Model (3IVM) [20]. The designation ‘ABC’ 

originally refers to the dislocation generation parameter A, the dynamic annihilation 

parameter relevant at low and intermediate temperatures B, and the static recovery 
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parameter C at elevated temperatures, as used in ref. [40]. The advanced ABC  model 

describes the generation and reduction of mobile and immobile dislocations, with the 

respective dislocation density in the cell interior, 𝜌int, and the cell wall dislocation density, 𝜌w. 

It is described in detail in the subsequent sections. The Taylor equation is used to describe the 

athermal stress contribution in the form 

𝜎ath = 𝛼1(1 − 𝑓w)𝑏𝑀𝐺√𝜌int + 𝛼2𝑓w𝑏𝑀𝐺√𝜌w, (6) 

where the strengthening coefficients 𝛼1 = 𝛼2 = 0.34. The strengthening coefficient 𝛼 is 

thoroughly discussed for instance in [41–45]. A constant value for 𝛼 is assumed for the 

different dislocation structures in the present work for the merit of clear interpretation of the 

simulation results. This is certainly a simplification, but it provides a consistent correlation 

between the simulated dislocation density and the measured flow stress with respect to our 

experimental observations. The volume fraction of cell walls is also assumed to be constant 

with fw=0.1, for the same reason as for the value of 𝛼. M is the Taylor factor. 

2.2.1 Internal dislocation density 

The internal dislocation density, 𝜌int, is defined as the sum of the excess mobile dislocation 

density in the cell interior, 𝜌ex,m or simply 𝜌m, the immobile dislocation density 𝜌im, and the 

equilibrium internal dislocation density 𝜌equ,i, which is assumed to be 1011 m-2 in this work. 

Mobile dislocations are produced at dislocation sources and move through the cell interiors 

and cell walls until they eventually become immobilized or annihilated. The mobile generation 

term can be written as [31]  

𝜌̇m
+ = 

𝑀𝜖̇

𝑏𝐿eff
. (7) 

𝐿eff is the effective mean free travel distance of a mobile dislocation [20], and it is expressed 

as 

1

𝐿eff
=
√𝜌int

𝐴m
+
√𝜌w

𝛽w
+
𝛽G
𝐷G
+ 𝛽SS·√𝜌m. (8) 

The first two contributions on the right-hand side account for the interaction of mobile 

dislocations with internal dislocations as well as wall dislocations. 𝐴m and 𝛽w are constants, 
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related to the impact of dislocations on the free travel distance of mobile dislocations during 

deformation. 𝛽G is a constant related to the effect of grain size with diameter 𝐷G. Although 

this simplified approach neglects the interaction of the individual contributions, it is widely 

used in literature and it has the potential to be extended by twinning- and precipitation effects 

[46,47]. The applied model is also suitable for simulating the dislocation structures within a 

wide temperature range (e.g. -196 °C – 500 °C), as successfully shown in [48]. The equations 

(9), (10) and (11) describe the reduction rate of mobile dislocations by annihilation due to 

dislocation glide, and the formation of dipoles and locks. The different critical distances 

related to each mechanism are accounted for by the parameters 𝐵m, 𝐴w and 𝐴im, in the 

attempt to use the same value of 𝑑crit for each mechanism, however, with individual pre-

factors. The reduction rate for mobile dislocations due to annihilation is expressed as [37] 

𝜌̇m,ann
− = 2·𝐵m·

𝑑crit𝜖̇𝑀

𝑏
𝜌m. (9) 

It should be emphasized that 𝐵m can be concentration-dependent (see section 5.1 later). For 

a detailed explanation of this relation see, e.g. Deschamps et al. [5].  

Dislocation dipoles can form if the stress fields of two antiparallel mobile dislocations interact 

but they are too far away from each other to annihilate. Dislocation dipoles are often swept 

into the cell walls and do not contribute to plastic shear deformation at all. The reduction rate 

of mobile dislocations due to the formation of dipoles is given as  

𝜌̇m,dip
− = 2·𝐴w·

𝑑crit·𝜖̇𝑀

𝑏
𝜌m. (10) 

Dislocation locks can be created, when two dislocations come closer to each other than a 

critical distance but move on different slip planes such that the resulting Burgers vector of the 

combined dislocation is located outside an active glide plane. The corresponding reduction 

rate is expressed as 

𝜌̇m,lock
− = 4·𝐴im·

𝑑crit·𝜖̇𝑀

𝑏
𝜌m. (11) 

At higher temperatures, annihilation due to climbing processes takes place, leading to [37] 
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𝜌̇m,climb
− = 2·𝐶m·𝑀·

𝐷eff𝐺𝑏
3

𝑘B𝑇
(𝜌m

2 − 𝜌equ,i
2 ). (12) 

𝐶m is a constant and 𝐷eff is the effective diffusion coefficient that includes the accelerating 

effect of excess vacancies [49], dislocation pipe diffusion [50], and the retarding effect of 

trapping of vacancies at solute atoms [51]. Since all experiments are conducted at room 

temperature in this work, climbing processes are neglected in the following treatment, 

although the respective terms are included in the rate equations of the MatCalc software. The 

overall evolution equation of the mobile dislocation density is finally 

𝜌̇m = 𝜌̇m
+ − 𝜌̇m,ann

− − 𝜌̇m,dip
− − 𝜌̇m,lock

− − 𝜌̇m,climb
− . (13) 

The production rate of immobile dislocations 𝜌im in the cell interior is equal to the formation 

rate of dislocation locks from mobile dislocations with 

𝜌̇im
+ = 𝜌̇m,lock

− . (14) 

The immobile dislocations can become annihilated at sufficiently high temperatures by 

climbing expressed as 

𝜌̇im,climb
− = −2·𝐶im·𝑀·

𝐷eff𝐺𝑏
3

𝑘B𝑇
𝜌im
2 , (15) 

where 𝐶im is a constant. In the present framework, the immobile dislocation density can also 

be reduced dynamically at room temperature at a rate of  

𝜌̇im,ann
− = −4·𝐵im·

𝑑crit·𝜖̇𝑀

𝑏
𝜌im, (16) 

where the parameter 𝐵im is defined in Table 5. The overall evolution rate for immobile 

dislocations 𝜌im is given by the sum of equations (14), (15) and (16). 

2.2.2 Wall dislocation density 

In addition to the stored mobile and immobile dislocations, the dipoles, which form inside the 

cells, are swept into the cell walls, as originally proposed by Kratocvil and Libovicky [52]. 

Therefore, the production rate of excess wall dislocations is assumed to be 
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𝜌̇w
+ =

1

𝑓w
𝜌̇m,dip
− . (17) 

Only diffusion-controlled climbing is assumed, in the present work, to reduce the wall 

dislocation density, given by 

𝜌̇w
− = 2·𝐶w·𝑀·

𝐷eff𝐺𝑏
3

𝑘B𝑇
(𝜌w
2 ), (18) 

where 𝐶w is a constant. The overall wall dislocation density evolution is given by the weighted 

sum of the internal dislocation density evolution rates, 𝜌̇w
+  and 𝜌̇w

− . The total dislocation 

density is finally  

𝜌tot = (1 − 𝑓w)·𝜌int(𝑡) + 𝑓w·𝜌w(𝑡). (19) 

3. Experimental 

3.1 Material and heat treatment 

All binary Al-X alloys are cast in an inductive melting furnace using high purity Al 99.999 wt%, 

Cu 99.99 wt%, Zn 99.99 wt% and Mn 99.99 wt%. The ingots with the highest alloying 

concentrations are used as master alloys for preparing the more dilute alloys. The following 

Table 1, Table 2 and Table 3 describe the designation of the alloys and the measured 

concentrations in weight percent by a wet-chemical analysis. 

Table 1. Cu alloys designation and measured concentration in wt%. 

 Cu 0.1 % Cu 0.4 % Cu 0.8 % Cu 1.6 % 

Cu (%) 0.13 0.44 0.86 1.56 

 

Table 2. Zn alloys designation and measured concentration in wt%. 

 Zn 0.4 % Zn 0.8 % Zn 2 % Zn 4 % 

Zn (%) 0.46 0.94 2.17 4.81 

 

Table 3. Mn alloys designation and measured concentration in wt%. 

 Mn 0.1 % Mn 0.2 % Mn 0.4 % Mn 0.8 % 

Mn (%) 0.11 0.23 0.43 0.82 
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The processing of the cylindrical specimens for the deformation tests follows the same 

procedure for all binary alloys: casting, homogenization, extrusion, additional heat treatment, 

and mechanical sample preparation. All heat treatments are carried out in a circulating air 

furnace (Carbolite Type 3508). The ingots are homogenized in the following way: Al-Cu - 480 

°C for 6 h; Al-Zn - 530 °C for 5 h; Al-Mn - 630 °C for 5 h. The homogenization temperatures are 

chosen to ensure a solid solution of the alloying elements within the Al matrix. The ingots are 

quenched in water to prevent the nucleation of precipitates. These quenching rates are high 

enough to avoid the formation of precipitates at these low alloying concentrations, as 

reported in [16,53,54]. To get rid of the casting microstructure, the ingots are extruded to a 

final diameter of 10 mm before additional heat treatment (Al-Cu - 530 °C for 1 h; Al-Zn -  

530 °C for 1 h; Al-Mn - 630 °C for 1 h), ensuring homogeneous and large grain sizes. Since this 

work focuses on the influence of solutes on both, the yield stress and the work hardening 

behavior, hardening due to fine grains is thus excluded. Finally, cylindrical specimens with a 

diameter of 5 mm and a length of 10 mm are fabricated.  

3.2 Mechanical testing 

The compression tests to obtain the flow curves are performed on a dilatometer DIL 805 A/D. 

Prior to the deformation step, the specimens are solution heat treated at 530 °C for 5 min and 

helium-cooled with a cooling rate of 50 K/s to room temperature. Each deformation test is 

repeated at least twice with applied true strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1 and 1 s-1. 

4. Experimental results  

To analyze the influence of solutes on the plastic deformation behavior, the yield stress Rp0.2 

and the initial hardening rate 𝜃0, which is the slope of the stress-strain curve at the yield point, 

are utilized. For a schematic illustration of 𝜃0, see, e.g., Kreyca and Kozeschnik [37]. Attention 

should be drawn to the fact that the evaluation of 𝜃0 is very sensitive to the applied data 

evaluation criteria and to the nature of the data in general. Still, this analysis delivers a trend, 

which can provide valuable insight into the dislocation evolution behavior.  

In this section, the initial hardening rates 𝜃0 and the yield stresses are plotted as a function of 

the solute content and the strain rates for the binary Al-Mn, Al-Cu and Al-Zn alloys. In each 

plot, the results for pure Al are included, to have a baseline for a better illustration of the 

influence of the alloying elements on the mechanical properties. The results of the flow curves 

are shown in chapter 5.3, where the MatCalc simulations are also included.  
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4.1 Binary Al-Mn alloys 

Figure 1 (a) shows an increasing initial hardening rate 𝜃0 with an increasing concentration of 

Mn. Interestingly, 0.1 wt% and 0.2 wt% Mn have almost no impact on the hardening rate, 

compared to pure Al. A clear increase in the initial hardening rate can be noticed at high strain 

rates as shown in Figure 1 (b). 

  

(a) (b) 

Figure 1. Initial hardening rate 𝜃0 as a function of (a) the concentration of Mn and (b) the 

true strain rate. 

The yield stress, Rp0.2, is strongly increased by additions of Mn, and a clear trend of increasing 

yield stress as a function of the strain rate, especially, at high concentrations, is visible in Figure 

2 (a) and (b).  

  

(a) (b) 

Figure 2. Yield stress as a function of (a) the concentration of Mn and (b) the true strain rate. 
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4.2 Binary Al-Cu alloys 

The higher the amount of dissolved Cu within the Al matrix, the higher is the initial hardening 

rate 𝜃0, as indicated in Figure 3 (a). However, 𝜃0 slightly decreases with an increasing strain 

rate, as shown in Figure 3 (b), which is different from the effects of Mn and the dependency 

in pure Al. 

  

(a) (b) 

Figure 3. Initial hardening rate 𝜃0 as a function of (a) the concentration of Cu and (b) the 

true strain rate. 

The yield stress increases with an increasing amount of Cu, whereas no clear trend is observed 

as a function of the strain rate, as shown in Figure 4. 

  

(a) (b) 

Figure 4. Yield stress as a function of (a) the concentration of Cu and (b) the true strain rate. 
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4.3 Binary Al-Zn alloys 

A small amount of Zn within the Al matrix strongly increases the initial hardening rate 𝜃0, 

compared to pure Al, as shown in Figure 5 (a). The more Zn is included, the smaller the 𝜃0 

value becomes. Furthermore, 𝜃0 slightly decreases with an increasing strain rate, as shown in 

Figure 5 (b). 

  

(a) (b) 

Figure 5. Initial hardening rate 𝜃0 as a function of (a) the concentration of Zn and (b) the true 

strain rate. 

Zn has a rather low impact on the solid solution strengthening effect, leading to similar yield 

stresses, as shown in Figure 6 (a). The higher the strain rate, the higher is the yield stress, as 

indicated in Figure 6 (b). 
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(a) (b) 

Figure 6. Yield stress as a function of (a) the concentration of Zn and (b) the true strain rate. 

5. Simulation and discussion 

5.1 Simulation input parameters 

The general parameters, which are used in the models of section 2, are summarized in Table 

4. The calibration parameters for the strengthening models are listed in Table 5, for pure Al as 

well as the Al-X (X = Mn, Cu, Zn) alloys. The input parameters used for simulating the thermal 

stress contribution are marked with ‘Th.’, whereas the input parameters for the athermal 

stress contribution are marked with ‘Ath.’. Since the strain rate and concentration 

dependence of the thermal stress contribution are given by the equations (1)-(5)., the 

respective parameters are constant in Table 5. For calibrating the dislocation density 

evolution, the so-called Kocks-Mecking (KM) plot, which shows the strain hardening rate as a 

function of stress, gives a good indication of the dislocation recovery behavior. Stronger 

recovery effects typically cause a steeper slope of the KM-plot and, therefore, affect the 

parameter 𝐵m in Table 5, for instance. Since dynamic recovery is not dependent on the 

concentration in the investigated Al-Mn alloys, 𝐵m and 𝐵im are constants. The parameters 𝐶m, 

𝐶im and 𝐶w take dislocation climbing into account and can be treated as constant for the 

deformation tests at room temperature. It should be noted that this approach does not claim 

to be a comprehensive representation of all occurring physical mechanisms, but it represents 

a consistent way to describe the dislocation density evolution and successfully simulate a 

variety of flow curves with a single set of parameters. 
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Table 4. General input parameters for the strengthening models as described in sections 

2.1 -2.2. 

Symbol Meaning  Unit Value Source 

𝑏 Burgers vector m 2.86·10−10 55 

G Shear modulus MPa 
29,438.4–
15.052T 

36 

𝜈 Poisson’s ratio - 0.347 56 

M Taylor factor - 3.06 57 

 

Table 5. Input parameters for the strengthening models as described in sections 2.1 and 2.2. 
The input parameters used for simulating the thermal stress contribution are marked with 
‘Th.’, whereas the input parameters for the athermal stress contribution are marked with 

‘Ath.’.  

 Pure Al Mn Cu Zn Equ. 

𝜎basic 

Th. 

18 MPa (1) 

𝑘1 0.1  (2) 

𝑘2 0 0.55 0.8 0.3 (2) 

n 1/3 (2) 

𝑛ss 1.8 (3) 

𝜀m 0 0.042 0.0194 0.0038 (5) 

𝐴m 

Ath
. 

-0.22∙ ln(𝜀̇) + 33.75 (8) 

𝛽ss 0 
202.17∙
𝑐1.80 

2.62∙ 𝜀̇−0.064𝑐 0.0046∙ 𝑐0.11 
(8) 

𝛽w 750 (8) 

𝛽G 0.08 (8) 

𝐴w -0.07∙ ln(𝜀̇) + 0.68 (10) 

𝐴im -(1.3·10-4)∙ ln(𝜀̇) + 0.85 (11) 

𝐵m 
-0.564∙ ln(𝜀̇) +

8.94 
𝐵m,Al 

𝐵m,Al-27.2∙

𝜀̇−0.14𝑐0.52 

𝐵m,Al-0.78∙ 𝜀̇−0.3 ∙

𝑐0.24 

(9) 

𝐵im 0.03∙ ln(𝜀̇) + 0.9 𝐵im,Al 𝐵im,Al 𝐵im,Al (16) 

𝐶m 0.2 (12) 

𝐶im 0.2 (15) 

𝐶w 0.2 (18) 

5.2 Dislocation density evolution in pure Al and in Al-Cu  

Figure 7 shows the calculated evolution of the mobile dislocation density, 𝜌m, the wall 

dislocation density, 𝜌w, the immobile dislocation density, 𝜌im and a weighted sum, 𝜌tot, during 

deformation at RT with a true strain rate of 0.001 s-1 for (a) pure Al and (b) binary Al-Cu (1.6 

wt%). The simulated dislocation density 𝜌tot agrees reasonable with the obtained dislocation 

densities from [58], which are also included in Figure 7 (a). In the early stages of deformation, 
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the total dislocation density is mainly controlled by the generation of mobile dislocations. 

With increasing mobile dislocation density, the transformation into locks and dipoles gains 

relevance and, in addition to the mobile dislocation annihilation process, leads to a saturation 

of the mobile dislocation density. Only the formation and the annihilation of the mobile 

dislocations are directly affected by the alloying elements, as defined by 𝛽ss and 𝐵m in Table 

5. With an increasing amount of Cu, more mobile dislocations are generated, leading to a 

higher saturation level, as shown in Figure 7 (b). Since immobile and wall dislocations arise 

from mobile dislocations, these dislocation densities are indirectly concentration-dependent, 

as well.  

  

(a) (b) 

Figure 7. Calculated dislocation density evolution at RT and a strain rate of 0.001 s-1 for (a) 

pure Al and (b) Al-Cu (1.6 wt%). 

The highest dislocation densities are predicted to occur inside the cell walls, with a maximum 

value of almost 1015 m-2 at 0.5 strain. Note that the total strain is the weighted sum of strain 

produced by internal and wall dislocations based on the cell volume fraction, fw. 

Although no direct experimental evidence has been provided to confirm the development of 

the different dislocation structures as shown in Figure 7, the measured flow curves provide 

valuable information about the dislocation development especially in pure Al, where work 

hardening is considered as the main strengthening mechanism. 
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5.3 Flow curve simulations 

In Figure 8, flow curves of different binary Al-Mn alloys are plotted for strain rates between 

0.001 s-1 and 1 s-1. The solid lines represent the simulations, which are calculated on the basis 

of the simulation parameters listed in Table 4 and Table 5. The experimental results are 

indicated by the symbols. The plastic deformation behavior is given by the sum of the thermal 

and athermal stress contribution, as discussed in section 2. The thermal part determines the 

initial yield stress of each flow curve and is calculated by the superposition of the basic stress 

and solid solution strengthening. Due to thermal activation, the measured yield stress can be 

lower than the basic stress, as shown in equation (1). Especially for high strain rates (𝜑̇ = 0.1 

and 𝜑̇ = 1 s-1) and high concentrations, a trend of increasing hardening rate 𝜃 can be observed 

in the experimental data. 
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(a) (b) 

  

(c) (d) 

Figure 8. Flow curves of binary Al-Mn alloys at strain rates of (a) 0.001; (b) 0.01; (c) 0.1; (d) 1 

s-1. 

Figure 9 shows the flow curves of the binary Al-Cu alloys for applied strain rates between 0.001 

s-1 and 1 s-1. The concentration-dependency of the work hardening rate is determined by the 

influence of the dissolved atoms on the internal and wall dislocation density, as discussed in 

section 2.2. An increasing Cu amount lowers the effective mean free travel distance of mobile 

dislocations and decreases 𝐵m, as indicated by the equations in Table 5. Consequently, more 

mobile dislocations are formed, and less annihilation occurs at the same time, leading to a 

higher athermal stress contribution. The model calibration of 𝛽ss and 𝐴m suggest a negative 

strain rate sensitivity of the initial strengthening rate 𝜃0, as observed in the experiments. A 

slightly increasing dynamic recovery effect with increasing strain rate is given by the strain 

rate dependency of 𝐵m. This can be observed if Figure 9 (a) and (d) are compared at 1.56 wt% 
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Cu. Although the flow curve has a higher initial yield stress at a strain rate of 1 s-1, the 

evaluated stress at a strain of 0.3 is less compared to the curve at a strain rate of 0.001 s-1.  

  

(a) (b) 

  

(c) (d) 

Figure 9. Flow curves of binary Al-Cu at strain rates of (a) 0.001, (b) 0.01; (c) 0.1; (d) 1 s-1. 

Figure 10 shows the flow curves of different binary Al-Zn alloys for strain rates between 0.001 

s-1 and 1 s-1. As discussed in section 4.3, the initial hardening rate rapidly increases, even at a 

small amount of dissolved Zn. However, the work hardening rate at higher strains seems to be 

almost independent of the Zn concentration, which is also seen in the simulation, represented 

by the solid lines in Figure 10. The yield stresses are almost independent of the Zn content, 

which is consistent with Figure 6 a. 
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(a) (b) 

  

(c) (d) 

Figure 10. Flow curves of binary Al-Zn alloys at strain rates of (a) 0.001, (b) 0.01; (c) 0.1; (d) 1 

s-1. 

6. Conclusion 

In this work, a comprehensive experimental study of the influence of dissolved alloying 

elements on the yield strength as well as the work hardening is given. In addition, the 

evolution of mobile, immobile and wall dislocations is simulated. A better understanding of 

the strain rate- and concentration-dependent microstructure evolution can help to design 

novel Al-alloys. Therefore, binary Al-Cu, Al-Mn and Al-Zn alloys are cast, heat treated, 

extruded, and deformed. The main conclusions are: 
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• Higher concentration of Mn or Cu increases the yield stress, whereas Zn has only a low 

impact on solid solution strengthening. For calculating the yield stress, the mechanical 

threshold concept is used, where the activation energy depends on the effective 

concentration, 𝑐eff, of the alloying elements. 

• The strain rate dependency of the initial strain hardening rate 𝜃0 is opposite for Mn 

and Cu. A higher strain rate increases 𝜃0 in Mn-containing alloys, whereas a lowering 

effect is observed in Cu-containing alloys. This effect is accounted for in the calibration 

of the dislocation evolution model. 

• Except for an increase in the initial work hardening rate, Zn has little influence on the 

strain-hardening effect.  

For the flow curve simulations, an advanced 3IVM is used, which differentiates between 

mobile, immobile, and wall dislocations and also includes dynamic recovery terms for the 

immobile and wall dislocations. By using the Taylor equation, the dislocation densities are 

translated into stress contributions and flow curves are successfully simulated for different 

alloying concentrations and strain rates. All simulations are successfully performed on basis 

of a single set of composition-dependent input parameters. 
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Appendix 

List of symbols: 

Symbol Meaning 

𝑘1 Calibration parameter for the low temperature activation energy 

𝑘2 Calibration parameter for the low temperature activation energy 

n Calibration exponent for the low temperature activation energy 

𝐴m 
Calibration parameters, which consider the contributions of mobile 
dislocations (𝐴m), dislocation dipoles (𝛽w), the grain size (𝛽G), and the 
solutes (𝛽ss) to the mean free path.  

𝛽w 
𝛽G 
𝛽ss 
𝐵m 

Calibration parameters for dynamic recovery terms caused by dislocation 
annihilation (𝐵m), formation of dislocations locks (𝐴im) and dipoles (𝐴w). 

𝐴im 
𝐴w 
𝐶m 

Calibration parameters for static recovery of mobile dislocations (𝐶m), 
immobile dislocations (𝐶im) and wall dislocations (𝐶w) 

𝐶im 
𝐶w 

 

References 

1. R. A. Labusch: Phys. Stat. Sol., 1970, vol. 41, pp. 659–669. 

2. G. P. M. Leyson, W. A. Curtin, L. G. Hector and C. F. Woodward: Nat. Mater., 2010, vol. 9, pp. 
750–755. 

3. G. P. M. Leyson, L. G. Hector and W. A. Curtin: Acta Mater., 2012, vol. 60, pp. 3873–3884. 

4. G. P. M. Leyson and W. A. Curtin: Scr. Mater., 2016, vol. 111, pp. 85–88. 

5. A. Deschamps, Y. Bréchet, C. J. Necker, S. Saimoto and J. D. Embury: Mater. Sci. Eng. A, 1996,  
vol. 207, pp. 143–152. 

6. A. H. Cottrell and M. A. Jaswon: Proc. R. Soc. London, 1949, vol. 199, pp. 104–144. 

7. R. L. Fleischer: Acta Metall., 1949, vol. 11, pp. 203–209. 

8. H. Suzuki: J. Phys. Soc. Japan, 1962, vol. 17, pp. 322–325. 

9. P. Haasen: Mechanical Properties of Solid Solutions. in Physical Metallurgy III (eds. R. W. Cahn 
and P. Haasen), pp. 2009–2073 (North-Holland, 1996). 

10. N. F. Mott and F. R. N. Nabarro: Physical Society Bristol Conference Report (1948). 

11. J. Friedel: Les Dislocations. (Gauthier-Villars, Paris, 1956). 

12. G. P. M Leyson.and W. A. Curtin: Philos. Mag., 2013, vol. 93, pp. 2428–2444. 

13. M. Jobba, R. K. Mishra and M. Niewczas: Int. J. Plast., 2015, vol. 65, pp. 43–60. 

14. A. Kula, X. Jia, R.K. Mishra and M. Niewczas: Int. J. Plast., 2022, vol. 155, 103321. 

15. A. Hunter and D. L. Preston: Int. J. Plast., 2022, vol. 151, 103178. 

16. J. C. Teixeira, Y. Bréchet, Y. Estrin and C. Hutchinson: Proc. 12th Int. Conf. Alum. Alloy., 2010, 
pp. 536–541. 



116 

 

17. N. Grilli, K. G. F. Janssens, J. Nellessen, S. Sandlöbes and D. Raabe: Int. J. Plast., 2018, vol. 100, 
pp. 104–121. 

18. E. Bitzek, C. Brandl, P. M. Derlet and H. Van Swygenhoven: Phys. Rev. Lett., 2008, vol. 100, pp. 
1–4. 

19. U. Messerschmidt and M. Bartsch: Mater. Chem. Phys., 2003, vol. 81, pp. 518–523. 

20. F. Roters, D. Raabe and G. Gottstein: Acta mater, 2000, vol. 48, pp. 4181–4189. 

21. M. Goerdeler: Application of a Dislocation Density Based Flow Stress Model in the Integrative 
Through-Process Modelling of Aluminium Production. (Shaker Verlag, 2007). 

22. P. Ludwik: Phys. Zeitschrift Nr.12, 1909, pp. 411–417. 

23. E. Voce: Metallurgia, 1955, pp. 219–226. 

24. G. R. Johnson and W. H. Cook: Proc. Seventh Int. Symp. Ballist., 1983, pp. 541–547. 

25. F. J. Zerilli and R. W Armstrong: J. Appl. Phys., 1987, vol. 61, pp. 1816–1825. 

26. S. Huang and A.S. Khan, S. Huang, A. S. Khan: Int. J. Plast., 1992, vol. 8, pp. 501–517. 

27. U. F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85. 

28. L. P. Kubin and Y. Estrin: Acta Met. mater., 1990, vol. 38, pp. 697–708. 

29. Y. Estrin: J. Mater. Process. Technol., 1998, vol. 80, pp. 33–39. 

30. E. Nes: Prog. Mater. Sci., 1997, vol. 41, pp. 129–193. 

31. F. Barlat, M. V. Glazov, J. C. Brem and D. J. Lege: Int. J. Plast., 2002, vol. 18, pp. 919–939. 

32. L. S. Tóth, A. Molinari and Y. Estrin: J. Eng. Mater. Technol. Trans. ASME, 2002, vol. 124, pp. 
71–77. 

33. R. A. Austin and D. L. Mcdowell: Int. J. Plast., 2011, vol. 27, pp. 1–24. 

34. X. G. Fan, and H. Yang: Int. J. Plast., 2011, vol. 27, pp. 1833–1852. 

35. C. Y Gao and L. C. Zhang: Int. J. Plast., 2012, vol. 32–33, pp. 121–133. 

36. E. I.Galindo-Nava, J. Sietsma and P. E. J. Rivera-Díaz-Del-Castillo: Acta Mater.,2012, vol. 60, pp. 
2615–2624. 

37. J. Kreyca and E. Kozeschnik: Int. J. Plast., 2018, vol. 103, pp. 67–80. 

38. W. A. Curtin, D. L. Olmsted and L. G. Hector: Nat. Mater., 2006, vol. 5, pp. 875–880. 

39. P. Haasen: Mechanical properties of solid solutions in Physical Metallurgy, pp. 2010–2073 
(1996). 

40. P. Sherstnev, P. Lang and E. Kozeschnik: ECCOMAS 2012 - Eur. Congr. Comput. Methods Appl. 
Sci. Eng. E-b., 2012, pp. 5331–5338. 

41. N. Hansen and X. Huang: Acta Mater., 1998, vol. 46, pp. 1827–1836. 

42. U. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol 48, pp. 171–273. 

43. F.F. Lavrentev: Mater. Sci. Eng., 1980, vol. 46, pp. 191–208. 

44. M. Sauzay  and L. P. Kubin: Progress in Materials Science, 2011, vol. 56, pp. 725–784. 

45. H. Mughrabi: Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 411–420. 



117 

 

46. D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed–Akbari, T. 
Hickel, F. Roters and D. Raabe: Acta Mater., 2013, vol. 61, pp. 494–510. 

47. Y. Wang, H. Zhao, X. Chen, B. Gault, Y. Brechet, C. Hutchinson: Acta Mater., 2024, vol. 265, 
119643  

48. A. Sadeghi and E. Kozeschnik: Metall. Mater. Trans. A, 2024, vol. 55, pp. 1643–1653. 

49. F. D. Fischer, J. Svoboda, F. Appel and E. Kozeschnik: Acta Mater., 2011, vol. 59, pp. 3463–
3472. 

50. R. Radis and E. Kozeschnik: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, pp. 1-15. 

51. F. D. Fischer, J. Svoboda and E. Kozeschnik: Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 1-
13. 

52. J. Kratochvil and S. Libovicky: Pergamon Journals Ltd, 1986, pp. 1625–1630. 

53. W. B. Zhou, G.B. Teng, C.Y. Liu, H.Q. Qi, H.F. Huang, Y. Chen and H.J. Jiang, l. J. Mater. Eng. 
Perform., 2017, vol. 26, pp. 3977–3982. 

54. M. Somerday and F.J. Humphreys: Mater. Sci. Technol., 2003, vol. 19, pp. 20–29. 

55. H. J. Frost and M. F. Ashby: Deformation-Mechanism Maps, The Plasticity and Creep of Metals 
and Ceramics. (Pergamon Press, 1982). 

56. J. P. Hirth and J. Lothe: Theory of Dislocations. (Krieger Publishing Company, 1991). 

57. U. F. Kocks: Metall. Mater. Trans., 1970, vol. 1, pp. 1121–1143. 

58. J. Gubicza, N. Q. Chinh, Z. Horita and T. G. Langdon: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 
55–59. 

 

  



118 

 

Conference Paper  

 

Article 

State Parameter-Based Simulation of Temperature- and 

Strain Rate Dependent Flow Curves of Al-Alloys 

Bernhard Viernsteina,1, Philipp Schumacherb,2, Benjamin Milkereitbc,3, Ernst Kozeschnika,4 

a Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, Vienna, 1060, 

Austria 

b Chair of Materials Science, University of Rostock, Justus v. Liebig Weg 2, 18059 Rostock, 

Germany  

c Competence Center for Calorimetry and Thermal Analysis Rostock - °CALOR, Department 

Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, Rostock, 18059, 

Germany 

1 bernhard.viernstein@tuwien.ac.at, 2 philipp.schumacher@mail.de, 3 

benjamin.milkereit@uni-rostock.de,   

4 ernst.kozeschnik@tuwien.ac.at 

Abstract When simulating the material behavior during thermo-mechanical processes, the 

understanding of the microstructure evolution is fundamental. Therefore, state parameter-

based models are utilized to describe physical effects such as work hardening, precipitation 

hardening, solid solution hardening and cross core diffusion. Using the thermo-kinetic 

software package MatCalc, temperature- and strain rate dependent flow curves of 

compression tests are successfully simulated. The theoretical background of the underlying 

physical models and the influence of alloying elements on the cross core diffusion behavior 

are discussed. Various Al-alloys are investigated and the experimentally obtained flow curves 

are evaluated in terms of initial strain hardening rate, initial yield stress and saturation stress. 

In Al-alloys, especially the effect of Mg is dominant due to its ability to diffuse from the 

compression side to the tension side of the dislocations core, leading to additional barriers for 

the dislocation movement.  
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1. Introduction 

Many state parameter based yield strength models capture the influence of temperature- and 

strain rate behavior on plastic deformation of polycrystalline materials [1-12]. Mobile 

dislocations interact with obstacles, leading to work hardening, precipitation strengthening, 

or solid solution hardening, which are strongly dependent on the current microstructure. 

Grain boundary hardening is out of the scope of the present work. The thermo-kinetic 

software package MatCalc is used to simulate flow curves of different binary Al-Mg alloys. This 

work focuses on the influence of temperature, strain rate and solute concentration on the 

initial yield strength. Generally, flow curves, which represent material properties, can be used 

as input data in FE-simulations for calculating internal stresses. Therefore, the transition from 

the linear elastic deformation to plastic deformation needs to be calculated properly. The 

existing model, which is implemented in MatCalc, is adapted by a correction term, due to the 

difficulty of reproducing the initial stress-strain slopes 𝜃0 and the saturation stresses 𝜎sat 

starting from Rp0.2 in experimental results. The modified model significantly improves the 

agreement of simulations and experimental results of different flow curves. 

2. State of the art 

2.1 Thermal activation at constant microstructure 

The strength and density of obstacles determine the dislocation motion rate 𝜀̇, represented 

by an Arrhenius equation [13-18], as 

𝜀̇ =  𝜀0̇· exp (
−∆𝐺

𝑘𝑇
). (1) 

ε̇0 is a constant and ∆𝐺 is the free activation enthalpy. An assumed box-shaped energy barrier 

leads to [15, 19] 

∆𝐺(𝜎) =  ∆𝐹[1 − (
𝜎

𝜏̂
)], (2) 

where ∆F is the total free energy to overcome the obstacle barrier, 𝜎 is the applied shear 

stress and 𝜏̂ is the mechanical threshold, which is the required stress for ongoing dislocation 

movement without thermal activation at 0 K. The activation energy ∆𝐹 depends on the 
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obstacle strength and is expressed as a function of the effective concentration of solutes 

within the matrix [19]. Additional microstructural dependence of ∆𝐹, for instance on 

precipitates, will be the scope of further investigations. However, τ̂ is related to the material 

state and strongly depends on the thermo-mechanical history of the material. The mechanical 

threshold combines strengthening mechanisms, such as, the cross core diffusion effect, solid 

solution hardening, precipitation hardening and grain size hardening. Combining Eq. (1) and 

Eq. (2) leads to  

𝜎 =  𝜏̂·(1 − [
𝑘𝑇

∆𝐹
] ln (

𝜀̇

𝜀0̇
)). (3) 

Since Eq. (3) becomes invalid at a critical temperature Tcrit, the following alternative equation 

is widely used in literature [19, 20]: 

 𝜎lt = 𝜏̂·𝑒𝑥𝑝 (
−𝑘𝑇

∆𝐹𝜎0
lt
∗ 𝑙𝑛 (

𝜀0̇
𝜀̇
)). (4) 

At elevated temperatures, dislocation climb becomes the dominant mechanism, leading to an 

increasing resolved strain rate dependence of stress, which is expressed by the following 

power-law equation [15] 

𝛾̇ ∝  (
𝜎

𝜇
)
𝑛

. (5) 

The exponent n varies between 3 and 10 [15]. In the following, yield stress at high 

temperatures is calculated according to [19] 

𝜎ht = (𝜏̂
𝜀̇𝑘𝑇(𝛼𝑏𝐺)2

2𝑏𝑐∆𝐹𝜎0
lt ·𝑒𝑥𝑝 (−

∆𝐹𝜎0
lt

𝑘𝑇
)

)

1/𝑛

. (6) 

𝛼 is the strengthening coefficient, b the Burgers vector, G the shear modulus, and c the speed 

of sound.  

The total thermal stress 𝜎0 is then given as 

𝜎0 = (
1

𝜎lt
+
1

𝜎ht
)
−1

. (7) 

2.2 Microstructure evolution 

The Kocks-Mecking model is a state-parameter based representation of the microstructure 

evolution during a thermo-mechanical treatment and is expressed as [13, 21] 
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𝜕𝜌

𝜕𝜀
=  
𝑑𝜌+

𝑑𝜀
+ 
𝑑𝜌−

𝑑𝜀
 =  

𝑀

𝑏𝐴
√𝜌 − 2𝐵𝑀

𝑑crit
𝑏
𝜌. (8) 

The first term 
𝑑𝜌+

𝑑𝜀
 refers to the generation of dislocations, while 

𝑑𝜌−

𝑑𝜀
 takes the annihilation of 

dislocations during plastic deformation into account. M is the Taylor factor, A and B are 

proportionality constants and 𝑑crit is the critical annihilation distance between two 

dislocations [22]. At high temperatures, vacancy-assisted climb becomes dominant and is 

incorporated by the following term, which represents static recovery 

𝑑𝜌𝑠
−

𝑑𝜀
=  −2𝐶𝐷𝑑

𝐺𝑏3

𝜀̇𝑘𝑇
(𝜌2 − 𝜌eq

2 ) . (9) 

C is a constant, 𝐷d 𝑖𝑠 the diffusion coefficient along dislocation pipes, 𝜀̇ the strain rate and 

𝜌eq is the equilibrium dislocation density. The Taylor equation correlates the present material 

state with the athermal plastic stress contribution 𝜎p as  

𝜎p = 𝑔1√𝜌 , (10) 

with 𝑔1 = 𝛼𝑀𝑏𝐺. 

Recently, Kreyca [19] established a relation between A(𝜀,̇ 𝑇), B(𝜀,̇ 𝑇) and C(𝜀,̇ 𝑇) to the initial 

slope 𝜃0 and the saturation stress 𝜎sat of a stress-strain curve by 

𝐴 =  
𝑔1𝑀

2𝑏𝜃0
 ,  (11) 

𝐵 =  
𝑏𝜃0

𝜎∞
lt𝑑crit𝑀

 ,  (12) 

𝐶 =  
𝑔1
2

(𝜎∞
ht)3

𝜃0𝜀̇𝑘𝑇

𝐷d𝐺𝑏3
 . (13) 

The saturation stress 𝜎sat is reached, when dislocation generation is balanced by dislocation 

annihilation. Similar to Eq. (4) and Eq. (6), a distinction of the saturation stress at two 

temperature regimes is introduced to consider both, thermally activated glide at low 

temperature as well as vacancy-assisted climb at high temperature. For detailed explanation 

of θ0, σ∞
lt  and σ∞

ht, see [19, 20]. 

3. Small strain correction of the flow curve 

By evaluating experimental data, the applied model leads to a satisfying agreement starting 

at a defined yield stress at a strain of 2 %, labelled as Rp2. A limitation of the described models 

(see 2.1 and 2.2) is that the steeper slope of the stress-strain curve at lower strain cannot be 

represented by the extended Kocks-Mecking model, which has been designed to represent 
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stage III hardening [21]. The experimental observations can be explained by inhomogeneities 

of the material, leading to varying plasticity behavior than described by the extended Kocks-

Mecking model. However, for calculating internal stresses in further applications, the 

transition between the linear elastic range and the plastic range needs to be calculated 

properly. Therefore, an interpolation function is established and introduced in the schematic 

Fig. 1. In the first step, the applied model (see 2.1 and 2.2) is calibrated according to 

experimental results, in order to simulate the flow curves, starting at Rp2 (point 1). In the 

second step, the same set of calibration parameters is used to simulate the flow curve from 

Rp0.2 (point 2). This can be illustrated as a shift of the calculated stress strain curve in step 

one to Rp0.2 (point 2), indicated by the black arrow in Fig 1. Consequently, this simulated flow 

curve does not fit to the experimental results, until a correction function (“ß-function”) lowers 

the anterior part to point 3 in step three. As a result, the corrected final flow curve is 

calculated, starting from Rp0.2 (point 3). 

 

Figure 1. Schematic explanation of the correction function at small strains. Stress-strain curves 

are calculated from Rp2 (point 1), shifted to Rp0.2 (point 2) and lowered to point 3.   

The correction function is defined as 

𝜎𝛽−function =  𝜎model·𝛽, (14) 

where 𝜎model are the simulated stresses starting from Rp2 in point 2 in Fig. 1, which are equal 

to the stresses from Rp0.2 in point 3. 𝛽 is defined as 

𝛽 =  √
𝜌·𝛽1
𝜌sat

+ 𝛽2, (15) 

where 𝛽1 and 𝛽2  are calibration parameters and 𝜌sat is the saturation dislocation density. The 

resulting corrected function 𝜎cor is derived from the following summation rule: 
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(
1

𝜎cor
)
𝑛

= (
1

𝜎model
)
𝑛

+ (
1

𝜎𝛽−function
)

𝑛

, (16) 

where n is a calibration parameter. In Fig. 2, 𝜎𝛽−function is shown as dotted line. Additionally, 

the shifted, uncorrected yield strength from Rp2 (dashed line), as well as the corrected final 

yield stress 𝜎cor (solid line) are displayed. 

 

 

Figure 2. The blue dashed line represents the uncorrected flow curve from Rp2, which is 

shifted to a strain of 𝜀 = 0.002 [−]; the red dotted line is the 𝛽-function and the purple solid 

line is the simulation of the corrected final flow curve starting from Rp0.2 (𝜎cor). Symbols 

indicate experimental results of a deformation of pure Al at 30 °C at a strain rate of 0.1 s-1 

[23]. 

Flow curves at low temperatures show high saturation dislocation densities 𝜌sat, resulting in 

𝛽 ≈ 𝛽2. Using Eq. (16) leads to the final corrected stresses 𝜎cor. In case of low saturation 

stresses at high temperatures, 𝛽 and 𝜎𝛽−function become very high and according to Eq. (16), 

𝜎cor are similar to the original, uncorrected stresses σmodel. 

4. Influence of solutes on the initial yield stress 𝜎0 (Rp2) 

The diffusion of solutes from the compression side to the tension side of a dislocation core 

leads to an additional barrier for dislocation movement and, consequently, to an additional 

strengthening effect [24]. Through the concentration change at the tension side, an effective 

concentration ceff is defined. The activation energies of the initial yield strengths (Rp2) ∆F𝜎0
lt  

and ∆F𝜎0
ht  in Eq. (4) and Eq. (6) are fitted in dependence on ceff. The mechanism of the single-
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atomic-hop motion is discussed in ref. [23] and is incorporated within the mechanical 

threshold framework, which is discussed in section 2.1. Improved diffusion at lower strain 

rates 𝜀̇ or higher temperatures leads to negative strain rate sensitivity (nSRS) within a certain 

strain rate and temperature range. Since ceff is temperature and strain rate dependent, the 

cross core diffusion effect and, as a consequence, the mechanical threshold stress (MTS) are 

dependent on temperature and strain rate as well. The combination of the MTS concept and 

the small strain correction function is validated on experimental data. This work compares 

pure Al4N (99.99 %) with two high purity binary Al-Mg alloys with 0.4 wt% and 0.8 wt% Mg in 

solid solution. It must be emphasized that small amounts of additional alloying elements in 

commercial alloys, such as Fe or Mn, strongly influence the resulting stress-strain curves, as 

investigated in [25]. The strain rate of the evaluated flow curves in this work is 0.1 s-1. Fig. 3 

shows the uncorrected total yield stresses from Rp2 as a function of temperature and the 

nominal Mg concentration of the alloys. The higher the amount of Mg, the higher is the 

contribution of solid solution hardening. In the temperature range between approximately 

100 °C and 300 °C, the temperature dependence of ceff becomes dominant, leading to an 

inflection point at the stress – temperature curve. 

 

Figure 3. Comparison of simulated uncorrected yield stresses from Rp2 for different amount 

of Mg and experimental results (symbols) at a strain rate of 0.1 s-1.  

5. Final flow curve simulation  

By calibrating θ0, σ∞
lt  and σ∞

ht (see [19]) with the experimental results, the coefficients A(𝜀̇,T), 

B(𝜀̇,T) and C(𝜀̇,T) are calculated by Eq. (11), Eq. (12) and Eq. (13). With the extended Kocks-

Mecking model and the Taylor equation, the athermal stress contribution 𝜎p is calculated, 
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starting from Rp2. The uncorrected flow curve is given by the sum of thermal stress 𝜎0 in Eq. 

(7) and the athermal stress 𝜎𝑝 in Eq. (10). By fitting 𝛽1and 𝛽2 in Eq. (15), as well as the 

exponent n in Eq. (16), the correction function for small strains σβ−function is defined. Fig. 4 

compares simulated final flow curves, starting from Rp0.2, for different amounts of Mg  

(0 wt% - 0.8 wt%) and different temperatures (30 °C, 100 °C, 200 °C, 300 °C).  

  

(a) (b) 

 

 

(c)  

Figure 4. Comparison of simulation of the final flow curve from Rp0.2 and experimental 

results (symbols) for (a) 0.0 (b) 0.4 and (c) 0.8 wt. % Mg at a strain rate of 0.1 s-1 

With the combination of the extended Kocks-Mecking model, the MTS framework and the 

introduced correction function, a good agreement between experiments and simulations, 

especially at small strains, is achieved. The investigation of the underlaying models for 

different strain rates and alloying elements is the scope for further simulations in the future.  

6. Conclusions 
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The influence of solutes on the initial yield stress 𝜎0 (Rp2) is investigated in binary Al-Mg alloys 

at different temperatures. The results show a strong influence of the cross core diffusion 

effect in the temperature range between 100 °C and 300 °C. By adding the athermal stress 

contribution 𝜎p, the flow curve starting from Rp2 is calculated. Since stress-strain curves at 

lower strain cannot be represented satisfyingly with the applied models, a correction function 

is invented. The resulting corrected final flow curve, starting from Rp0.2, is in good agreement 

with experiments.  

7. References 

[1] L. P. Kubin and Y. Estrin, “Evolution of dislocation densities and the critical conditions for the 

Portevin-Le Chatelier effect,” Acta Met. mater., vol. 38, no. 5, pp. 697–708, 1990. 

[2] E. Nes, “Modelling of work hardening and stress saturation in FCC metals,” Prog. Mater. Sci., 

vol. 41, no. 3, pp. 129–193, 1997. 

[3] F. Roters, D. Raabe, and G. Gottstein, “Work hardening in heterogeneous alloys—a 

microstructural approach based on three internal state Variables,” Acta mater, vol. 48, pp. 

4181–4189, 2000. 

[4] K. Marthinsen and E. Nes, “Modelling strain hardening and steady state deformation of Al – Mg 

alloys Modelling strain hardening and steady state deformation of Al – Mg alloys,” Mater. Sci. 

Technol., no. 17:4, pp. 376–388, 2001. 

[5] F. Barlat, M. V Glazov, J. C. Brem, and D. J. Lege, “A simple model for dislocation behavior , strain 

and strain rate hardening evolution in deforming aluminum alloys,” Int. J. Plast., vol. 18, pp. 

919–939, 2002. 

[6] L. S. Tóth, A. Molinari, and Y. Estrin, “Strain Hardening at Large Strains as Predicted by 

Dislocation Based,” J. Eng. Mater. Technol., vol. 124, pp. 71–77, 2002. 

[7] I. J. Beyerlein and C. N. Tome, “A dislocation-based constitutive law for pure Zr including 

temperature effects,” Int. J. Plast., vol. 24, pp. 867–895, 2008. 

[8] R. A. Austin and D. L. Mcdowell, “A dislocation-based constitutive model for viscoplastic 

deformation of fcc metals at very high strain rates,” Int. J. Plast., vol. 27, no. 1, pp. 1–24, 2011. 

[9] X. G. Fan and H. Yang, “Internal-state-variable based self-consistent constitutive modeling for 

hot working of two-phase titanium alloys coupling microstructure evolution,” Int. J. Plast., vol. 

27, no. 11, pp. 1833–1852, 2011. 



127 

 

[10] C. Y. Gao and L. C. Zhang, “Constitutive modelling of plasticity of fcc metals under extremely 

high strain rates,” Int. J. Plast., vol. 32–33, pp. 121–133, 2012. 

[11] B. L. Hansen, I. J. Beyerlein, C. A. Bronkhorst, and E. K. Cerreta, “A dislocation-based multi-rate 

single crystal plasticity model,” Int. J. Plast., vol. 44, pp. 129–146, 2013. 

[12] D. Li, H. Zbib, X. Sun, and M. Khaleel, “Predicting plastic flow and irradiation hardening of iron 

single crystal with mechanism-based continuum dislocation dynamics,” Int. J. Plast., vol. 52, pp. 

3–17, 2014. 

[13] U. F. Kocks, “Laws for work hardening and low temperature creep.pdf,” J. Eng. Mater. Technol., 

vol. 98, no. 1, pp. 76–85, 1976. 

[14] P. S. Follansbee and U. F. Kocks, “A constitutive description of the deformation of copper based 

on the use of the mechanical threshold stress as an internal state variable,” Acta Met., vol. 36, 

no. I, pp. 81–93, 1988. 

[15] H. J. Frost and M. F. Ashby, Deformation-mechanism maps. Oxford: Pergamon Press, 1982. 

[16] G. Schoeck, “The Activation Energy of Dislocation Movement,” Phys. Stat. Sol., vol. 8, pp. 499–

507, 1965. 

[17] A. S. Argon, “Mechanical properties of single- phase crystalline media: Deformation at low 

temperatures,” in Physical Metallurgy III., Fourth, Re., Elsevier B.V., 1996, pp. 1877–1955. 

[18] V. Schulze and O. Voehringer, “Influence of Alloying Elements on the Strain Rate and 

Temperature Dependence of the Flow Stress of Steels,” Metall. Mater. Trans. A, vol. 31, no. 

March, pp. 825–830, 2000. 

[19] F. J. Kreyca, “State parameter based modelling of stress- strain curves in aluminium alloys,” 

Ph.D. thesis, TU Wien, 2017. 

[20] J. Kreyca and E. Kozeschnik, “State parameter-based constitutive modelling of stress strain 

curves in Al-Mg solid solutions,” Int. J. Plast., vol. 103, no. December 2017, pp. 67–80, 2018. 

[21] U. Kocks and H. Mecking, “Physics and phenomenology of strainhardening: the FCC case,” Prog. 

Mater. Sci., vol. 48, pp. 171–273, 2003. 

[22] S. Brinckmann, R. Sivanesapillai, and A. Hartmaier, “On the formation of vacancies by edge 

dislocation dipole annihilation in fatigued copper,” Int. J. Fatigue, vol. 33, no. 10, pp. 1369–

1375, 2011. 

[23] P. Schumacher, “Plastisches Verformungsverhalten unterkühlter Aluminiumlegierungen im 



128 

 

System Al-Mg-Si,” in Band 7 von Forschungsberichte aus dem Lehrstuhl für Werkstofftechnik der 

Universität Rostock, Shaker Verlag, 2018. doi:10.2370/9783844063851 

[24] W. A. Curtin, D. L. Olmsted, and L. G. Hector, “A predictive mechanism for dynamic strain ageing 

in aluminium-magnesium alloys.,” Nat. Mater., vol. 5, no. November, pp. 875–880, 2006. 

[25] Ø. Ryen and E. Nes, “Strengthening Mechanisms in Solid Solution Aluminum Alloys,” Metall. 

Mater. Trans. A, vol. 37, 2006. 


